ترغب بنشر مسار تعليمي؟ اضغط هنا

Little-Bang and Femto-Nova in Nucleus-Nucleus Collisions

156   0   0.0 ( 0 )
 نشر من قبل Kenji Fukushima
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make a theoretical and experimental summary of the state-of-the-art status of hot and dense QCD matter studies on selected topics. We review the Beam Energy Scan program for the QCD phase diagram and present the current status of search for QCD Critical Point, particle production in high baryon density region, hypernuclei production, and global polarization effects in nucleus-nucleus collisions. The available experimental data in the strangeness sector suggests that a grand canonical approach in thermal model at high collision energy makes a transition to the canonical ensemble behavior at low energy. We further discuss future prospects of nuclear collisions to probe properties of baryon-rich matter. Creation of a quark-gluon plasma at high temperature and low baryon density has been called the Little-Bang and, analogously, a femtometer-scale explosion of baryon-rich matter at lower collision energy could be called the Femto-Nova, which may possibly sustain substantial vorticity and magnetic field for non-head-on collisions.



قيم البحث

اقرأ أيضاً

The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam ics. The transport coefficients entering into the relativistic Langevin equation are evaluated by matching the hard-thermal-loop result for soft collisions with a perturbative QCD calculation for hard scatterings. The heavy-quark spectra thus obtained are employed to compute the differential cross sections, the nuclear modification factors R_AA and the elliptic flow coefficients v_2 of electrons from heavy-flavour decay.
256 - M. Monteno 2011
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav y-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.
126 - M.Alvioli , L. Frankfurt , V.Guzey 2014
We analyze $pA$ interactions at ultra-high energies within the semiclassical approximation for high energy processes accounting for the diffractive processes and a rapid increase with the incident energy of the coherence length. The fluctuations of t he strength of interaction expected in QCD and momentum conservation are taken into account also. We evaluate the number of wounded nucleons in soft and hard processes, the multiplicity of jets in the proton fragmentation region as a function of the variance of the distribution over the interaction strengths directly measured in forward diffractive $pN$ scattering for RHIC and LHC energies. We argue that these results could be used to test whether parton configurations containing a parton carrying the $xge 0.5$ fraction of the projectile momentum interact significantly weaker than on average. We also study leading twist shadowing and the EMC effect for superdense nuclear matter configurations probed in the events with larger than average number of wounded nucleons.
165 - M. Alvioli , M. Strikman 2013
Color fluctuations in hadron-hadron collisions are responsible for the presence of inelastic diffraction and lead to distinctive differences between the Gribov picture of high energy scattering and the low energy Glauber picture. We find that color f luctuations give a larger contribution to the fluctuations of the number of wounded nucleons than the fluctuations of the number of nucleons at a given impact parameter. The two contributions for the impact parameter averaged fluctuations are comparable. As a result, standard procedures for selecting peripheral (central) collisions lead to selection of configurations in the projectile which interact with smaller (larger) than average strength. We suggest that studies of pA collisions with a hard trigger may allow to observe effects of color fluctuations.
We demonstrate that oxygen-oxygen (OO) collisions at the LHC provide unprecedented sensitivity to parton energy loss in a system whose size is comparable to those created in very peripheral heavy-ion collisions. With leading and next-to-leading order calculations of nuclear modification factors, we show that the baseline in the absence of partonic rescattering is known with up to 2% theoretical accuracy in inclusive OO collisions. Surprisingly, a $Z$-boson normalized nuclear modification factor does not lead to higher theoretical accuracy within current uncertainties of nuclear parton distribution functions. We study a broad range of parton energy loss models and we find that the expected signal of partonic rescattering can be disentangled from the baseline by measuring charged hadron spectra in the range $20,text{GeV}<p_T<100,text{GeV}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا