ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary convex cocompactness and stability of subgroups of finitely generated groups

138   0   0.0 ( 0 )
 نشر من قبل Matthew Cordes
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Kleinian group $Gamma < mathrm{Isom}(mathbb H^3)$ is called convex cocompact if any orbit of $Gamma$ in $mathbb H^3$ is quasiconvex or, equivalently, $Gamma$ acts cocompactly on the convex hull of its limit set in $partial mathbb H^3$. Subgroup stability is a strong quasiconvexity condition in finitely generated groups which is intrinsic to the geometry of the ambient group and generalizes the classical quasiconvexity condition above. Importantly, it coincides with quasiconvexity in hyperbolic groups and convex cocompactness in mapping class groups. Using the Morse boundary, we develop an equivalent characterization of subgroup stability which generalizes the above boundary characterization from Kleinian groups.



قيم البحث

اقرأ أيضاً

208 - Carolyn R. Abbott 2015
The class of acylindrically hyperbolic groups, which are groups that admit a certain type of non-elementary action on a hyperbolic space, contains many interesting groups such as non-exceptional mapping class groups and $operatorname{Out}(mathbb F_n) $ for $ngeq 2$. In such a group, a generalized loxodromic element is one that is loxodromic for some acylindrical action of the group on a hyperbolic space. Osin asks whether every finitely generated group has an acylindrical action on a hyperbolic space for which all generalized loxodromic elements are loxodromic. We answer this question in the negative, using Dunwoodys example of an inaccessible group as a counterexample.
We amend the statement of point~(i) in Theorem~1.3 in arxiv:0901.1022 and supply the additional arguments and minor changes for the results that depend on it. We also seize the occasion and generalize to non-finitely generated lattices.
188 - Bena Tshishiku 2021
We show that finitely-generated, purely pseudo-Anosov subgroups of the genus-2 Goeritz group are convex cocompact in the genus-2 mapping class group.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l ength $n$) with $ngeq 5$. We construct another eight forbidden graphs and show that every graph $K$ on $le 8$ vertices either contains one of our examples, or contains a hole of length $ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a RAAG to contain no hyperbolic surface subgroups. We prove that for one of these forbidden subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا