ﻻ يوجد ملخص باللغة العربية
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible spherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l
We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundam
For each natural number $d$ we construct a $3$-generated group $H_d$, which is a subdirect product of free groups, such that the cohomological dimension of $H_d$ is $d$. Given a group $F$ and a normal subgroup $N lhd F$ we prove that any right angled
We show that if a right-angled Artin group $A(Gamma)$ has a non-trivial, minimal action on a tree $T$ which is not a line, then $Gamma$ contains a separating subgraph $Lambda$ such that $A(Lambda)$ stabilizes an edge in $T$.
We characterize when (and how) a Right-Angled Artin group splits nontrivially over an abelian subgroup.