ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity and non-Fermi-liquid behavior in the heavy-fermion compound CeCo$_{1-x}$Ni$_x$In$_5$

76   0   0.0 ( 0 )
 نشر من قبل Makoto Yokoyama
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of off-plane impurity on superconductivity and non-Fermi-liquid (NFL) behavior in the layered heavy-fermion compound CeCo$_{1-x}$Ni$_x$In$_5$ is investigated by specific heat, magnetization, and electrical resistivity measurements. These measurements reveal that the superconducting (SC) transition temperature T$_c$ monotonically decreases from 2.3 K (x=0) to 0.8 K (x=0.20) with increasing x, and then the SC order disappears above x=0.25. At the same time, the Ni substitution yields the NFL behavior at zero field for x=0.25, characterized by the -ln T divergence in specific heat divided by temperature, C$_p$/T, and magnetic susceptibility, M/B. The NFL behavior in magnetic fields for x=0.25 is quite similar to that seen at around the SC upper critical field in pure CeCoIn$_5$, suggesting that both compounds are governed by the same antiferromagnetic quantum criticality. The resemblance of the doping effect on the SC order among Ni- , Sn-, and Pt-substituted CeCoIn5 supports the argument that the doped carriers are primarily responsible for the breakdown of the SC order. The present investigation further reveals the quantitative differences in the trends of the suppression of superconductivity between Ce(Co,Ni)In$_5$ and the other alloys, such as the rates of decrease in T$_c$, dT$_c$/dx, and specific heat jump at T$_c$, d($Delta$C$_p$/T$_c$)/dx. We suggest that the occupied positions of the doped ions play an important role in the origin of these differences.

قيم البحث

اقرأ أيضاً

We report on the anisotropic properties of Pauli-limited superconductivity (SC) and antiferromagnetism (AFM) in the solid solutions CeCo(In_{1-x}Zn_x)_5 (x<=0.07). In CeCo(In_{1-x}Zn_x)_5, the SC transition temperature T_c is continuously reduced fro m 2.3 K (x=0) to ~1.4 K (x=0.07) by doping Zn, and then the AFM order with the transition temperature of T_N~2.2 K develops for x larger than ~0.05. The present thermal, transport and magnetic measurements under magnetic field B reveal that the substitution of Zn for In yields little change of low-temperature upper critical field mu_0H_{c2} for both the tetragonal a and c axes, while it monotonically reduces the SC transition temperature T_c. In particular, the magnitudes of mu_0H_{c2} at the nominal Zn concentration of x = 0.05 (measured Zn amount of ~0.019) are 11.8 T for B||a and 4.8 T for B||c, which are as large as those of pure compound though T_c is reduced to 80% of that for x=0. We consider that this feature originates from a combination of both an enhanced AFM correlation and a reduced SC condensation energy in these alloys. It is also clarified that the AFM order differently responds to the magnetic field, depending on the field directions. For B||c, the clear anomaly due to the AFM transition is observed up to the AFM critical field of ~5 T in the thermodynamic quantities, whereas it is rapidly damped with increasing B for B||a. We discuss this anisotropic response on the basis of a rich variety of the AFM modulations involved in the Ce115 compounds.
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn$_5$ under pressure $P=1.75$ GPa. The onset of the magnetic order is evidenced from a clear split of $^{115}$In-NQR spect rum due to the spontaneous internal field below the Neel temperature $T_N=2.5$ K. Simultaneously, bulk SC below $T_c=2.0$ K is demonstrated by the observation of the Meissner diamagnetism signal whose size is the same as in the exclusively superconducting phase. These results indicate that the AFM coexists homogeneously with the SC at a microscopic level.
In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning paramet er phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In$_{1-x}$Cd$_x$)$_5$ at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.
Structural, magnetic and thermal measurements performed on CeCo{1-x}Fe{x}Si alloys are reported. Three regions can be recognized: i) Co-rich (x < 0.20) with a decreasing long range antiferromagnetic order which vanishes at finite temperature, ii) an intermediate region (0.20 < x < 0.30) showing a broad magnetic anomaly (C_A) in specific heat and iii) the non-magnetic region progressively changing from a non-Fermi-liquid type behavior towards a Fermi liquid one as Fe concentration increases. The C_A anomaly emerges as an incipient contribution above T_N already at x = 0.10, which indicates that this contribution is related to short range correlations likely of quasi-two dimensional type. Both, T_N transition and C_A anomaly are practically not affected by applied magnetic field up to B ~ 10 Tesla.
We demonstrate a close connection between observed field-induced antiferromagnetic (AFM) order and quantum critical fluctuation (QCF) in the Zn7%-doped heavy-fermion superconductor CeCoIn5. Magnetization, specific heat, and electrical resistivity at low temperatures all show the presence of new field-induced AFM order under the magnetic field B of 5-10 T, whose order parameter is clearly distinguished from the low-field AFM phase observed for B < 5 T and the superconducting phase for B < 3 T. The 4f electronic specific heat divided by the temperature, C_e/T, exhibits -lnT dependence at B~10 T (= B_0), and furthermore, the C_e/T data for B >= B_0 are well scaled by the logarithmic function of B and T: ln[(B-B_0)/T^{2.7}]. These features are quite similar to the scaling behavior found in pure CeCoIn5, strongly suggesting that the field-induced QCF in pure CeCoIn5 originates from the hidden AFM order parameter equivalent to high-field AFM order in Zn7%-doped CeCoIn5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا