ﻻ يوجد ملخص باللغة العربية
We demonstrate a close connection between observed field-induced antiferromagnetic (AFM) order and quantum critical fluctuation (QCF) in the Zn7%-doped heavy-fermion superconductor CeCoIn5. Magnetization, specific heat, and electrical resistivity at low temperatures all show the presence of new field-induced AFM order under the magnetic field B of 5-10 T, whose order parameter is clearly distinguished from the low-field AFM phase observed for B < 5 T and the superconducting phase for B < 3 T. The 4f electronic specific heat divided by the temperature, C_e/T, exhibits -lnT dependence at B~10 T (= B_0), and furthermore, the C_e/T data for B >= B_0 are well scaled by the logarithmic function of B and T: ln[(B-B_0)/T^{2.7}]. These features are quite similar to the scaling behavior found in pure CeCoIn5, strongly suggesting that the field-induced QCF in pure CeCoIn5 originates from the hidden AFM order parameter equivalent to high-field AFM order in Zn7%-doped CeCoIn5.
The effect of off-plane impurity on superconductivity and non-Fermi-liquid (NFL) behavior in the layered heavy-fermion compound CeCo$_{1-x}$Ni$_x$In$_5$ is investigated by specific heat, magnetization, and electrical resistivity measurements. These m
Quantum criticality in the normal and superconducting state of the heavy-fermion metal CeCoIn$_5$ is studied by measurements of the magnetic Gr{u}neisen ratio, $Gamma_H$, and specific heat in different field orientations and temperatures down to 50 m
In the immediate vicinity of the critical temperature (T$_c$) of a phase transition, there are fluctuations of the order parameter, which reside beyond the mean-field approximation. Such critical fluctuations usually occur in a very narrow temperatur
We study the electronic phase diagram of the excitonic insulator candidates Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ [x=0, ... ,1] using Raman spectroscopy. Critical excitonic fluctuations are observed, that diminish with $x$ and ultimately shift to high energi
This paper demonstrates the anisotropic response of quantum critical fluctuations with respect to the direction of the magnetic field $B$ in Ni-doped CeCoIn$_5$ by measuring the magnetization $M$ and specific heat $C$. The results show that $M/B$ at