ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In$_{1-x}$Cd$_x$)$_5$

254   0   0.0 ( 0 )
 نشر من قبل Ludovic Howald
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In$_{1-x}$Cd$_x$)$_5$ at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.

قيم البحث

اقرأ أيضاً

The effect of off-plane impurity on superconductivity and non-Fermi-liquid (NFL) behavior in the layered heavy-fermion compound CeCo$_{1-x}$Ni$_x$In$_5$ is investigated by specific heat, magnetization, and electrical resistivity measurements. These m easurements reveal that the superconducting (SC) transition temperature T$_c$ monotonically decreases from 2.3 K (x=0) to 0.8 K (x=0.20) with increasing x, and then the SC order disappears above x=0.25. At the same time, the Ni substitution yields the NFL behavior at zero field for x=0.25, characterized by the -ln T divergence in specific heat divided by temperature, C$_p$/T, and magnetic susceptibility, M/B. The NFL behavior in magnetic fields for x=0.25 is quite similar to that seen at around the SC upper critical field in pure CeCoIn$_5$, suggesting that both compounds are governed by the same antiferromagnetic quantum criticality. The resemblance of the doping effect on the SC order among Ni- , Sn-, and Pt-substituted CeCoIn5 supports the argument that the doped carriers are primarily responsible for the breakdown of the SC order. The present investigation further reveals the quantitative differences in the trends of the suppression of superconductivity between Ce(Co,Ni)In$_5$ and the other alloys, such as the rates of decrease in T$_c$, dT$_c$/dx, and specific heat jump at T$_c$, d($Delta$C$_p$/T$_c$)/dx. We suggest that the occupied positions of the doped ions play an important role in the origin of these differences.
We have studied the isothermal magnetization $M(H)$ of CeCo(In$_{1-x}$Cd$_x$)$_5$ with $x$ = 0.0075 and 0.01 down to 50 mK. Pronounced field-history dependent phenomena occur in the coexistence regime of the superconducting and antiferromagnetic phas es. At low-fields, a phenomenological model of magnetic-flux entry well explains $M(H)$ implying the dominance of bulk pinning effect. However, unless crystallographic quenched disorder is hysteretic, the asymmetric peak effect (ASPE) which appears at higher fields cannot be explained by the pinning of vortices due to material defects. Also the temperature dependence of the ASPE deviates from the conventional scenario for the peak effect. Comparison of our thermodynamic phase diagrams with those from previous neutron scattering and magnetoresistance experiments indicates that the pinning of vortices takes place at the field-history dependent antiferromagnetic domain boundaries.
We report on zero-field muon spin relaxation studies of cerium based heavy-fermion materials CeRh_{1-x}Ir_xIn_5. In the superconducting x=0.75 and 1 compositions muon spin relaxation functions were found to be temperature independent across T_c; no e vidence for the presence of electronic magnetic moments was observed. The x=0.5 material is antiferromagnetic below T_N=3.75 K and superconducting below T_c=0.8 K. Muon spin realxation spectra show the gradual onset of damped coherent oscillations characteristic of magnetic order below T_N. At 1.65 K the total oscillating amplitude accounts for at least 85% of the sample volume. No change in muon precession frequency or amplitude is detected on cooling below T_c, indicating the microscopic coexistence of magnetism and superconductivity in this material.
We present a systematic ^{115}In NQR study on the heavy fermion compounds CeRh_{1-x}Ir_xIn_5 (x=0.25, 0.35, 0.45, 0.5, 0.55 and 0.75). The results provide strong evidence for the microscopic coexistence of antiferromagnetic (AF) order and superconduc tivity (SC) in the range of 0.35 leq x leq 0.55. Specifically, for x=0.5, T_N is observed at 3 K with a subsequent onset of superconductivity at T_c=0.9 K. T_c reaches a maximum (0.94 K) at x=0.45 where T_N is found to be the highest (4.0 K). Detailed analysis of the measured spectra indicate that the same electrons participate in both SC and AF order. The nuclear spin-lattice relaxation rate 1/T_1 shows a broad peak at T_N and follows a T^3 variation below T_c, the latter property indicating unconventional SC as in CeIrIn_5 (T_c=0.4 K). We further find that, in the coexistence region, the T^3 dependence of 1/T_1 is replaced by a T-linear variation below Tsim 0.4 K, with the value frac{(T_1)_{T_c}}{(T_1)_{low-T}} increasing with decreasing x, likely due to low-lying magnetic excitations associated with the coexisting magnetism.
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn$_5$ under pressure $P=1.75$ GPa. The onset of the magnetic order is evidenced from a clear split of $^{115}$In-NQR spect rum due to the spontaneous internal field below the Neel temperature $T_N=2.5$ K. Simultaneously, bulk SC below $T_c=2.0$ K is demonstrated by the observation of the Meissner diamagnetism signal whose size is the same as in the exclusively superconducting phase. These results indicate that the AFM coexists homogeneously with the SC at a microscopic level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا