ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

146   0   0.0 ( 0 )
 نشر من قبل Minxian Xu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.



قيم البحث

اقرأ أيضاً

In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants of the system, iterating until all loads are balanced. Our algorithms are based on a short local deal-agreement communication of proposal/deal, based on the neighborhood loads. They converge monotonically, always providing a better state as the execution progresses. Besides, our algorithms avoid making loads temporarily negative. Thus, they may be considered anytime ones, in the sense that they can be stopped at any time during the execution. We show that our synchronous load balancing algorithms achieve $epsilon$-Balanced state for the continuous setting and 1-Balanced state for the discrete setting in all graphs, within $O(n D log(n K/epsilon))$ and $O(n D log(n K/D) + n D^2)$ time, respectively, where $n$ is the number of nodes, $K$ is the initial discrepancy, $D$ is the graph diameter, and $epsilon$ is the final discrepancy. Our other monotonic synchronous and asynchronous algorithms for the discrete setting are generalizations of the first presented algorithms, where load balancing is performed concurrently with more than one neighbor. These algorithms arrive at a 1-Balanced state in time $O(n K^2)$ in general graphs, but have a potential to be faster as the loads are balanced among all neighbors, rather than with only one; we describe a scenario that demonstrates the potential for a fast ($O(1)$) convergence. Our asynchronous algorithm avoids the need to wait for the slowest participants activity prior to making the next load balancing steps as synchronous settings restrict. We also introduce a self-stabilizing version of our asynchronous algorithm.
The increasing popularity of cloud computing has resulted in a proliferation of data centers. Effective placement of data centers improves network performance and minimizes clients perceived latency. The problem of determining the optimal placement o f data centers in a large network is a classical uncapacitated $k$-median problem. Traditional works have focused on centralized algorithms, which requires knowledge of the overall network topology and information about the customers service demands. Moreover, centralized algorithms are computationally expensive and do not scale well with the size of the network. We propose a fully distributed algorithm with linear complexity to optimize the locations of data centers. The proposed algorithm utilizes an iterative two-step optimization approach. Specifically, in each iteration, it first partitions the whole network into $k$ regions through a distributed partitioning algorithm; then within each region, it determines the local approximate optimal location through a distributed message-passing algorithm. When the underlying network is a tree topology, we show that the overall cost is monotonically decreasing between successive iterations and the proposed algorithm converges in a finite number of iterations. Extensive simulations on both synthetic and real Internet topologies show that the proposed algorithm achieves performance comparable with that of centralized algorithms that require global information and have higher computational complexity.
Distributed processing across a networked environment suffers from unpredictable behavior of speedup due to heterogeneous nature of the hardware and software in the remote machines. It is challenging to get a better performance from a distributed sys tem by distributing task in an intelligent manner such that the heterogeneous nature of the system do not have any effect on the speedup ratio. This paper introduces homogenization, a technique that distributes and balances the workload in such a manner that the user gets the highest speedup possible from a distributed environment. Along with providing better performance, homogenization is totally transparent to the user and requires no interaction with the system.
83 - Seth Gilbert , Uri Meir , Ami Paz 2021
In the load balancing problem, each node in a network is assigned a load, and the goal is to equally distribute the loads among the nodes, by preforming local load exchanges. While load balancing was extensively studied in static networks, only recen tly a load balancing algorithm for dynamic networks with a bounded convergence time was presented. In this paper, we further study the time complexity of load balancing in the context of dynamic networks. First, we show that randomness is not necessary, and present a deterministic algorithm which slightly improves the running time of the previous algorithm, at the price of not being matching-based. Then, we consider integral loads, i.e., loads that cannot be split indefinitely, and prove that no matching-based algorithm can have a bounded convergence time for this case. To circumvent both this impossibility result, and a known one for the non-integral case, we apply the method of smoothed analysis, where random perturbations are made over the worst-case choices of network topologies. We show both impossibility results do not hold under this kind of analysis, suggesting that load-balancing in real world systems might be faster than the lower bounds suggest.
Recently, fog computing has been introduced as a modern distributed paradigm and complement to cloud computing to provide services. Fog system extends storing and computing to the edge of the network, which can solve the problem about service computi ng of the delay-sensitive applications remarkably besides enabling the location awareness and mobility support. Load balancing is an important aspect of fog networks that avoids a situation with some under-loaded or overloaded fog nodes. Quality of Service (QoS) parameters such as resource utilization, throughput, cost, response time, performance, and energy consumption can be improved with load balancing. In recent years, some researches in load balancing techniques in fog networks have been carried out, but there is no systematic review to consolidate these studies. This article reviews the load-balancing mechanisms systematically in fog computing in four classifications, including approximate, exact, fundamental, and hybrid methods (published between 2013 and August 2020). Also, this article investigates load balancing metrics with all advantages and disadvantages related to chosen load balancing mechanisms in fog networks. The evaluation techniques and tools applied for each reviewed study are explored as well. Additionally, the essential open challenges and future trends of these mechanisms are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا