ﻻ يوجد ملخص باللغة العربية
In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants of the system, iterating until all loads are balanced. Our algorithms are based on a short local deal-agreement communication of proposal/deal, based on the neighborhood loads. They converge monotonically, always providing a better state as the execution progresses. Besides, our algorithms avoid making loads temporarily negative. Thus, they may be considered anytime ones, in the sense that they can be stopped at any time during the execution. We show that our synchronous load balancing algorithms achieve $epsilon$-Balanced state for the continuous setting and 1-Balanced state for the discrete setting in all graphs, within $O(n D log(n K/epsilon))$ and $O(n D log(n K/D) + n D^2)$ time, respectively, where $n$ is the number of nodes, $K$ is the initial discrepancy, $D$ is the graph diameter, and $epsilon$ is the final discrepancy. Our other monotonic synchronous and asynchronous algorithms for the discrete setting are generalizations of the first presented algorithms, where load balancing is performed concurrently with more than one neighbor. These algorithms arrive at a 1-Balanced state in time $O(n K^2)$ in general graphs, but have a potential to be faster as the loads are balanced among all neighbors, rather than with only one; we describe a scenario that demonstrates the potential for a fast ($O(1)$) convergence. Our asynchronous algorithm avoids the need to wait for the slowest participants activity prior to making the next load balancing steps as synchronous settings restrict. We also introduce a self-stabilizing version of our asynchronous algorithm.
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more genera
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is c
The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be
Reverse time migration (RTM) is a prominent technique in seismic imaging. Its resulting subsurface images are used in the industry to investigate with higher confidence the existence and the conditions of oil and gas reservoirs. Because of its high c
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce Partial Key Grouping (PKG), a new stream partitioning scheme that adapts the classical power of two choices to