ﻻ يوجد ملخص باللغة العربية
Recently, fog computing has been introduced as a modern distributed paradigm and complement to cloud computing to provide services. Fog system extends storing and computing to the edge of the network, which can solve the problem about service computing of the delay-sensitive applications remarkably besides enabling the location awareness and mobility support. Load balancing is an important aspect of fog networks that avoids a situation with some under-loaded or overloaded fog nodes. Quality of Service (QoS) parameters such as resource utilization, throughput, cost, response time, performance, and energy consumption can be improved with load balancing. In recent years, some researches in load balancing techniques in fog networks have been carried out, but there is no systematic review to consolidate these studies. This article reviews the load-balancing mechanisms systematically in fog computing in four classifications, including approximate, exact, fundamental, and hybrid methods (published between 2013 and August 2020). Also, this article investigates load balancing metrics with all advantages and disadvantages related to chosen load balancing mechanisms in fog networks. The evaluation techniques and tools applied for each reviewed study are explored as well. Additionally, the essential open challenges and future trends of these mechanisms are discussed.
These days, the development of smart cities, specifically in location-aware, latency-sensitive, and security-crucial applications (such as emergency fire events, patient health monitoring, or real-time manufacturing) heavily depends on a more advance
This paper first presents a parallel solution for the Flowshop Scheduling Problem in parallel environment, and then proposes a novel load balancing strategy. The proposed Proportional Fairness Strategy (PFS) takes computational performance of computi
Quantum computing is an emerging paradigm with the potential to offer significant computational advantage over conventional classical computing by exploiting quantum-mechanical principles such as entanglement and superposition. It is anticipated that
Fog computing is an emerging computing paradigm that has come into consideration for the deployment of IoT applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of
The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, ca