ﻻ يوجد ملخص باللغة العربية
In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical survey for hypofractionation based on an actual prostate-cancer treatment of carbon-ion radiotherapy. The proposed formulation was demonstrated to be practical and to offer theoretical implications. In the prostate-cancer case, the ERD distribution was very similar to the RBE-weighted-dose distribution of the actual treatment in 12 fractions. With hypofractionation, while the RBE-weighted-dose distribution varied significantly, the ERD distribution was nearly invariant, implying that the carbon-ion radiotherapy would be insensitive to fractionation. However, treatment evaluation with simplistic biological dose is intrinsically limited and must be complemented in practice somehow by clinical experiences and biology experiments.
item[Purpose] A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range com
Purpose: This is a theoretical simulation study for proof of concept of radiochromic film dosimetry to measure physical and biological doses without plan-based quenching correction for patient-specific quality assurance of carbon-ion radiotherapy. Me
A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB alg
This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method refe
Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms ar