ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons

94   0   0.0 ( 0 )
 نشر من قبل Xiaoxia Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1500 cm-1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here, we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire infrared fingerprint region, which was previously unattainable. In addition, undisturbed and highly-confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopy. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.



قيم البحث

اقرأ أيضاً

113 - S. Chen , M. Autore , J. Li 2018
Field-enhanced infrared molecular spectroscopy has been widely applied in chemical analysis, environment monitoring, and food and drug safety. The sensitivity of molecular spectroscopy critically depends on the electromagnetic field confinement and e nhancement in the sensing elements. Here we propose a concept for sensing, consisting of a graphene plasmonic nanoresonator separated from a metallic film by a nanometric spacer. Such a resonator can support acoustic graphene plasmons, AGPs; that provide ultra-confined electromagnetic fields and strong field enhancement. Compared to conventional plasmons in graphene, AGPs exhibit a much higher spontaneous emission rate, higher sensitivity to the dielectric permittivity inside the AGP nano resonator, and remarkable capability to enhance molecular vibrational fingerprints, of nanoscale analyte samples. Our work opens novel avenues for sensing of ultra-small volume of molecules, as well as for studying enhanced light-matter interaction, e.g. strong coupling applications.
449 - A. Drezet , C. Genet 2014
We show that, contrary to the common wisdom, surface plasmon poles are not involved in the imaging process in leakage radiation microscopy. Identifying the leakage radiation modes directly from a transverse magnetic potential leads us to reconsider t he surface plasmon field and unfold the non-plasmonic contribution to the image formation. While both contributions interfere in the imaging process, our analysis reveals that the reassessed plasmonic field embodies a pole mathematically similar to the usual surface plasmon pole. This removes a long-standing ambiguity associated with plasmonic signals in leakage radiation microscopy.
Due to strong mode-confinement, long propagation-distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter waveleng ths in order to integrate graphene plasmon concepts with existing mature technologies in the near-infrared region. We investigate localized graphene plasmons supported by graphene nanodisks and experimentally demonstrated graphene plasmon working at 2 {mu}m with the aid of a fully scalable block copolymer self-assembly method. Our results show a promising way to promote graphene plasmons for both fundamental studies and potential applications in the near-infrared window.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.
Acoustic-graphene-plasmons (AGPs) are highly confined electromagnetic modes, carrying large momentum and low loss in the mid-infrared/Terahertz spectra. Owing to their ability to confine light to extremely small dimensions, they bear great potential for ultra-strong light-matter interactions in this long wavelength regime, where molecular fingerprints reside. However, until now AGPs have been restricted to micron-scale areas, reducing their confinement potential by several orders-of-magnitude. Here, by utilizing a new type of graphene-based magnetic-resonance, we realize single, nanometric-scale AGP cavities, reaching record-breaking mode-volume confinement factors of $thicksim5cdot10^{-10}$. This AGP cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far-field, and electrically tuneble over an ultra-broadband spectrum. Our approach provides a new platform for studying ultra-strong-coupling phenomena, such as chemical manipulation via vibrational-strong-coupling, and a path to efficient detectors and sensors, in this challenging spectral range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا