ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic Graphene Plasmon Nanoresonators for Field Enhanced Infrared Molecular Spectroscopy

114   0   0.0 ( 0 )
 نشر من قبل Rainer Hillenbrand
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Field-enhanced infrared molecular spectroscopy has been widely applied in chemical analysis, environment monitoring, and food and drug safety. The sensitivity of molecular spectroscopy critically depends on the electromagnetic field confinement and enhancement in the sensing elements. Here we propose a concept for sensing, consisting of a graphene plasmonic nanoresonator separated from a metallic film by a nanometric spacer. Such a resonator can support acoustic graphene plasmons, AGPs; that provide ultra-confined electromagnetic fields and strong field enhancement. Compared to conventional plasmons in graphene, AGPs exhibit a much higher spontaneous emission rate, higher sensitivity to the dielectric permittivity inside the AGP nano resonator, and remarkable capability to enhance molecular vibrational fingerprints, of nanoscale analyte samples. Our work opens novel avenues for sensing of ultra-small volume of molecules, as well as for studying enhanced light-matter interaction, e.g. strong coupling applications.

قيم البحث

اقرأ أيضاً

345 - M. Autore , I. Dolado , P. Li 2021
Phonon-polaritons, mixed excitations of light coupled to lattice vibrations (phonons), are emerging as a powerful platform for nanophotonic applications. This is because of their ability to concentrate light into extreme sub-wavelength scales and bec ause of their longer phonon lifetimes than their plasmonic counterparts. In this work, the infrared properties of phonon-polaritonic nanoresonators made of monoisotopic B-10 hexagonal-boron nitride (h-BN) are explored, a material with increased phonon-polariton lifetimes compared to naturally abundant h-BN due to reduced photon scattering from randomly distributed isotopes. An average relative improvement of 50% in the nanoresonators Q factor is obtained with respect of nanoresonators made of naturally abundant h-BN. Moreover, the monoisotopic h-BN nano-ribbon arrays are used to sense nanometric-thick films of molecules, both through surface-enhanced absorption spectroscopy and refractive index sensing. In addition, strong coupling is achieved between a molecular vibration and the phonon-polariton resonance in monoisotopic h-BN ribbons.
We develop a novel theoretical framework describing polariton-enhanced spin-orbit interaction of light on the surface of two-dimensional media. Starting from the integral formulation of electromagnetic scattering, we exploit the reduced dimensionalit y of the system to introduce a quantum-like formalism particularly suitable to fully take advantage of rotational invariance. Our description is closely related to that of a fictitious spin one quantum particle living in the atomically thin medium, whose orbital, spin and total angular momenta play a key role in the scattering process. Conservation of total angular momentum upon scattering enables to physically unveil the interaction between radiation and the two-dimensional material along with the detailed exchange processes among orbital and spin components. In addition, we specialize our model to doped extended graphene, finding such spin-orbit interaction to be dramatically enhanced by the excitation of surface plasmon polaritons propagating radially along the graphene sheet. We provide several examples of the enormous possibilities offered by plasmon-enhanced spin-orbit interaction of light including vortex generation, mixing, and engineering of tunable deep subwavelength arrays of optical traps in the near field. Our results hold great potential for the development of nano-scaled quantum active elements and logic gates for the manipulation of hyper-entangled photon states as well as for the design of artificial media imprinted by engineered photonic lattices tweezing cold atoms into the desired patterns.
414 - Xuechao Yu , Jin Tao , Youde Shen 2014
Raman intensity of Rhodamine B (RhB) is enhanced by inserting a thin high k{appa} dielectric layer which reduces the surface plasmon damping at the gold-graphene interface. The results indicate that the Raman intensity increases sharply by plasmonic resonance enhancement while maintaining efficient fluorescence quenching with optimized dielectric layer thickness.
93 - Hai Hu , Xiaoxia Yang , Feng Zhai 2016
Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1500 cm-1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a signifi cant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here, we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire infrared fingerprint region, which was previously unattainable. In addition, undisturbed and highly-confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopy. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.
Waveguide-integrated plasmonics is a growing field with many innovative concepts and demonstrated devices in the visible and near-infrared. Here, we extend this body of work to the mid-infrared for the application of surface-enhanced infrared absorpt ion (SEIRA), a spectroscopic method to probe molecular vibrations in small volumes and thin films. Built atop a silicon-on-insulator (SOI) waveguide platform, two key plasmonic structures useful for SEIRA are examined using computational modeling: gold nanorods and coaxial nanoapertures. We find resonance dips of 80% in near diffraction-limited areas due to arrays of our structures and up to 40% from a single resonator. Each of the structures are evaluated using the simulated SEIRA signal from poly(methyl methacrylate) and an octadecanethiol self-assembled monolayer. The platforms we present allow for a compact, on-chip SEIRA sensing system with highly efficient waveguide coupling in the mid-IR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا