ﻻ يوجد ملخص باللغة العربية
Acoustic-graphene-plasmons (AGPs) are highly confined electromagnetic modes, carrying large momentum and low loss in the mid-infrared/Terahertz spectra. Owing to their ability to confine light to extremely small dimensions, they bear great potential for ultra-strong light-matter interactions in this long wavelength regime, where molecular fingerprints reside. However, until now AGPs have been restricted to micron-scale areas, reducing their confinement potential by several orders-of-magnitude. Here, by utilizing a new type of graphene-based magnetic-resonance, we realize single, nanometric-scale AGP cavities, reaching record-breaking mode-volume confinement factors of $thicksim5cdot10^{-10}$. This AGP cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far-field, and electrically tuneble over an ultra-broadband spectrum. Our approach provides a new platform for studying ultra-strong-coupling phenomena, such as chemical manipulation via vibrational-strong-coupling, and a path to efficient detectors and sensors, in this challenging spectral range.
Hybrid plasmonic nanoemitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challeng
Recent experimental and theoretical investigations demonstrate that twisted trilayer graphene (tTLG) is a highly tunable platform to study the correlated insulating states, ferromagnetism, and superconducting properties. Here we explore the possibili
We describe an efficient near-field to far-field transformation for optical quasinormal modes, which are the dissipative modes of open cavities and plasmonic resonators with complex eigenfrequencies. As an application of the theory, we show how one c
We study analytically the plasmonic modes in the graphene-coated dielectric nanowire, based on the explicit form of nonlinear surface conductivity of graphene. The propagation constants of different plasmonic modes can be tuned by the input power at
We show that global lower bounds to the mode volume of a dielectric resonator can be computed via Lagrangian duality. State-of-the-art designs rely on sharp tips, but such structures appear to be highly sub-optimal at nanometer-scale feature sizes, a