ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Light Scattering by Topological ${mathcal{PT}}$-symmetric Particle Arrays

70   0   0.0 ( 0 )
 نشر من قبل Kin Hung Fung
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge modes in a non-Hermitian $mathcal{PT}$-symmetric system can give rise to an anomalous sideway scattering when they are simultaneously excited by a plane wave. We propose a realization of such scattering state in a linear array of subwavelength resonators coated with gain media. The prediction is based on an analytical two-band model and verified by rigorous numerical simulation using multiple-multipole scattering theory. The result suggests an extreme situation where leakage of classical information is unnoticeable to the transmitter and the receiver when such a $mathcal{PT}$-symmetric unit is inserted into the communication channel.



قيم البحث

اقرأ أيضاً

We theoretically explore the role of mesoscopic fluctuations and noise on the spectral and temporal properties of systems of $mathcal{PT}$-symmetric coupled gain-loss resonators operating near the exceptional point, where eigenvalues and eigenvectors coalesce. We show that the inevitable detuning in the frequencies of the uncoupled resonators leads to an unavoidable modification of the conditions for reaching the exceptional point, while, as this point is approached in ensembles of resonator pairs, statistical averaging significantly smears the spectral features. We also discuss how these fluctuations affect the sensitivity of sensors based on coupled $mathcal{PT}$-symmetric resonators. Finally, we show that temporal fluctuations in the detuning and gain of these sensors lead to a quadratic growth of the optical power in time, thus implying that maintaining operation at the exceptional point over a long period can be rather challenging. Our theoretical analysis clarifies issues central to the realization of $mathcal{PT}$-symmetric devices, and should facilitate future experimental work in the field.
Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the imp lications of the former approach in the context of the latter. Motivated by the invariance of the $mathcal{PT}$ (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of $mathcal{PT}$-symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave function phases at adjacent sites occurs in the $mathcal{PT}$-symmetry broken region. Our results pave the way towards understanding the physically observable implications of time-invariants in the non-unitary dynamics produced by $mathcal{PT}$-symmetric Hamiltonians.
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber Bragg gratings (FBGs). The interplay among various grating parameters such as chirping, detuning, nonlinearities, and gain/loss gives rise to unique bi- and multi-stable states in the unbroken as well as broken $mathcal{PT}$-symmetric regimes. The role of chirping on the steering dynamics of the hysteresis curve is influenced by the type of nonlinearities and the nature of detuning parameter. Also, incident directions of the input light robustly impact the steering dynamics of bistable and multistable states both in the unbroken and broken $mathcal{PT}$-symmetric regimes. When the light launching direction is reversed, critical stable states are found to occur at very low intensities which opens up a new avenue for an additional way of controlling light with light. We also analyze the phenomenon of unidirectional wave transport and the reflective bi- and multi-stable characteristics at the so-called $mathcal{PT}$-symmetry breaking point.
Open systems with gain, loss, or both, described by non-Hermitian Hamiltonians, have been a research frontier for the past decade. In particular, such Hamiltonians which possess parity-time ($mathcal{PT}$) symmetry feature dynamically stable regimes of unbroken symmetry with completely real eigenspectra that are rendered into complex conjugate pairs as the strength of the non-Hermiticity increases. By subjecting a $mathcal{PT}$-symmetric system to a periodic (Floquet) driving, the regime of dynamical stability can be dramatically affected, leading to a frequency-dependent threshold for the $mathcal{PT}$-symmetry breaking transition. We present a simple model of a time-dependent $mathcal{PT}$-symmetric Hamiltonian which smoothly connects the static case, a $mathcal{PT}$-symmetric Floquet case, and a neutral-$mathcal{PT}$-symmetric case. We analytically and numerically analyze the $mathcal{PT}$ phase diagrams in each case, and show that slivers of $mathcal{PT}$-broken ($mathcal{PT}$-symmetric) phase extend deep into the nominally low (high) non-Hermiticity region.
We report the role of $mathcal{PT}$-symmetry in switching characteristics of a highly nonlinear fiber Bragg grating (FBG) with cubic-quintic-septic nonlinearities. We demonstrate that the device shows novel bi-(multi-) stable states in the broken reg ime as a direct consequence of the shift in the photonic band gap influenced by both $mathcal{PT}$-symmetry and higher-order nonlinearities. We also numerically depict that such FBGs provide a productive test bed where the broken $mathcal{PT}$-symmetric regime can be exploited to set up all-optical applications such as binary switches, multi-level signal processing and optical computing. Unlike optical bistability (OB) in the traditional and unbroken $mathcal{PT}$-symmetric FBG, it exhibits many peculiar features such as flat-top stable states and ramp like input-output characteristics before the onset of OB phenomenon in the broken regime. The gain/loss parameter plays a dual role in controlling the switching intensities between the stable states which is facilitated by reversing the direction of light incidence. We also find that the gain/loss parameter tailors the formation of gap solitons pertaining to transmission resonances which clearly indicates that it can be employed to set up optical storage devices. Moreover, the interplay between gain/loss and higher order nonlinearities brings notable changes in the nonlinear reflection spectra of the system under constant pump powers. The influence of each control parameters on the switching operation is also presented in a nutshell to validate that FBG offers more degrees of freedom in controlling light with light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا