ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifaceted dynamics and gap solitons in $mathcal{PT}$-symmetric periodic structures

120   0   0.0 ( 0 )
 نشر من قبل Arjunan Govindarajan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the role of $mathcal{PT}$-symmetry in switching characteristics of a highly nonlinear fiber Bragg grating (FBG) with cubic-quintic-septic nonlinearities. We demonstrate that the device shows novel bi-(multi-) stable states in the broken regime as a direct consequence of the shift in the photonic band gap influenced by both $mathcal{PT}$-symmetry and higher-order nonlinearities. We also numerically depict that such FBGs provide a productive test bed where the broken $mathcal{PT}$-symmetric regime can be exploited to set up all-optical applications such as binary switches, multi-level signal processing and optical computing. Unlike optical bistability (OB) in the traditional and unbroken $mathcal{PT}$-symmetric FBG, it exhibits many peculiar features such as flat-top stable states and ramp like input-output characteristics before the onset of OB phenomenon in the broken regime. The gain/loss parameter plays a dual role in controlling the switching intensities between the stable states which is facilitated by reversing the direction of light incidence. We also find that the gain/loss parameter tailors the formation of gap solitons pertaining to transmission resonances which clearly indicates that it can be employed to set up optical storage devices. Moreover, the interplay between gain/loss and higher order nonlinearities brings notable changes in the nonlinear reflection spectra of the system under constant pump powers. The influence of each control parameters on the switching operation is also presented in a nutshell to validate that FBG offers more degrees of freedom in controlling light with light.

قيم البحث

اقرأ أيضاً

We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber Bragg gratings (FBGs). The interplay among various grating parameters such as chirping, detuning, nonlinearities, and gain/loss gives rise to unique bi- and multi-stable states in the unbroken as well as broken $mathcal{PT}$-symmetric regimes. The role of chirping on the steering dynamics of the hysteresis curve is influenced by the type of nonlinearities and the nature of detuning parameter. Also, incident directions of the input light robustly impact the steering dynamics of bistable and multistable states both in the unbroken and broken $mathcal{PT}$-symmetric regimes. When the light launching direction is reversed, critical stable states are found to occur at very low intensities which opens up a new avenue for an additional way of controlling light with light. We also analyze the phenomenon of unidirectional wave transport and the reflective bi- and multi-stable characteristics at the so-called $mathcal{PT}$-symmetry breaking point.
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the pr esence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
Families of coupled solitons of $mathcal{PT}$-symmetric physical models with gain and loss in fractional dimension and in settings with and without cross-interactions modulation (CIM), are reported. Profiles, powers, stability areas, and propagation dynamics of the obtained $mathcal{PT}$-symmetric coupled solitons are investigated. By comparing the results of the models with and without CIM, we find that the stability area of the model with CIM is much broader than the one without CIM. Remarkably, oscillating $mathcal{PT}$-symmetric coupled solitons can also exist in the model of CIM with the same coefficients of the self- and cross-interactions modulations. In addition, the period of these oscillating coupled solitons can be controlled by the linear coupling coefficient.
We report the spectral features of a phase-shifted parity and time ($mathcal{PT}$)-symmetric fiber Bragg grating (PPTFBG) and demonstrate its functionality as a demultiplexer in the unbroken $mathcal{PT}$-symmetric regime. The length of the proposed system is of the order of millimeters and the lasing spectra in the broken $mathcal{PT}$-symmetric regime can be easily tuned in terms of intensity, bandwidth and wavelength by varying the magnitude of the phase shift in the middle of the structure. Surprisingly, the multi-modal lasing spectra are suppressed by virtue of judiciously selected phase and the gain-loss value. Also, it is possible to obtain sidelobe-less spectra in the broken $mathcal{PT}$-symmetric regime, without a need for an apodization profile, which is a traditional way to tame the unwanted sidelobes. The system is found to show narrow band single-mode lasing behavior for a wide range of phase shift values for given values of gain and loss. Moreover, we report the intensity tunable reflection and transmission characteristics in the unbroken regime via variation in gain and loss. At the exceptional point, the system shows unidirectional wave transport phenomenon independent of the presence of phase shift in the middle of the grating. For the right light incidence direction, the system exhibits zero reflection wavelengths within the stopband at the exceptional point. We also investigate the role of multiple phase shifts placed at fixed locations along the length of the FBG and the variations in the spectra when the phase shift and gain-loss values are tuned. In the broken $mathcal{PT}$-symmetric regime, the presence of multiple phase shifts aids in controlling the number of reflectivity peaks besides controlling their magnitude.
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms . We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anti-continuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, on the contrary of the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا