ﻻ يوجد ملخص باللغة العربية
We theoretically explore the role of mesoscopic fluctuations and noise on the spectral and temporal properties of systems of $mathcal{PT}$-symmetric coupled gain-loss resonators operating near the exceptional point, where eigenvalues and eigenvectors coalesce. We show that the inevitable detuning in the frequencies of the uncoupled resonators leads to an unavoidable modification of the conditions for reaching the exceptional point, while, as this point is approached in ensembles of resonator pairs, statistical averaging significantly smears the spectral features. We also discuss how these fluctuations affect the sensitivity of sensors based on coupled $mathcal{PT}$-symmetric resonators. Finally, we show that temporal fluctuations in the detuning and gain of these sensors lead to a quadratic growth of the optical power in time, thus implying that maintaining operation at the exceptional point over a long period can be rather challenging. Our theoretical analysis clarifies issues central to the realization of $mathcal{PT}$-symmetric devices, and should facilitate future experimental work in the field.
Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge mode
An experimental setup of three coupled $mathcal{PT}$-symmetric wave guides showing the characteristics of a third-order exceptional point (EP3) has been investigated in an idealized model of three delta-functions wave guides in W.~D. Heiss and G.~Wun
Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the imp
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber