ﻻ يوجد ملخص باللغة العربية
The band structure of high carrier density metal CrP features an interesting crossing at the Y point of the Brillouin zone. The crossing, which is protected by the nonsymmorphic symmetry of the space group, results in a hybrid, semi-Dirac-like energy-momentum dispersion relation near Y. The linear energy-momentum dispersion relation along Y-$Gamma$ is reminiscent of the observed band structure in several semimetallic extremely large magnetoresistance (XMR) materials. We have measured the transverse magnetoresistance of CrP up to 14 T at temperatures as low as $sim$ 16 mK. Our data reveal a nonsaturating, quadratic magnetoresistance as well as the behaviour of the so-called `turn-on temperature in the temperature dependence of resistivity. Despite the difference in the magnitude of the magnetoresistance and the fact that CrP is not a semimetal, these features are qualitatively similar to the observations reported for XMR materials. Thus, the high-field electrical transport studies of CrP offer the prospect of identifying the possible origin of the nonsaturating, quadratic magnetoresistance observed in a wide range of metals.
We present magnetoresistivity measurements in high-quality single crystals of the Nowotny chimney ladder compound Ru$_2$Sn$_3$. We find a linear and nonsaturating magnetoresistance up to 20 T. The magnetoresistance changes with the magnetic field ori
Materials exhibiting large magnetoresistance may not only be of fundamental research interest, but also can lead to wide-ranging applications in magnetic sensors and switches. Here we demonstrate a large linear-in-field magnetoresistance, $Delta rho/
Ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large magnetoresistance material WTe$_{2}$. Our experiments reveal a fast relaxation process occurring on a sub-picosecond time scale that is caused by electron-phonon
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS$_{4}$. Electrical resistivity increased with decreasing temperature according to the form proportional to $textrm{exp}(T_{0}/T)^{1/2} $, derived from
There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported re