ﻻ يوجد ملخص باللغة العربية
The transport and thermodynamic properties of $beta$-ReO$_{2}$ crystallizing in a nonsymmorphic structure were studied using high-quality single crystals. An extremely large magnetoresistance (XMR) reaching 22,000 $%$ in a transverse magnetic field of 10 T at 2 K was observed. However, distinguished from other topological semimetals with low carrier densities that show XMR, $beta$-ReO$_{2}$ has a high electron carrier density of 1 $times$ $10^{22}$ cm$^{-3}$ as determined by Hall measurements and large Fermi surfaces in the electronic structure. In addition, a small Fermi surface with a small effective mass was evidenced by de Haas-van Alphen oscillation measurements. The previous band structure calculations [S. S. Wang, et al., Nat. Commun. 8, 1844 (2017)] showed that two kinds of loops made of Dirac points of hourglass-shaped dispersions exist and are connected to each other by a point to form a string of alternating loops, called the Dirac loop chain (DLC), which are protected by the multiple glide symmetries. Our first-principles calculations revealed the complex Fermi surfaces with the smallest one corresponding to the observed small Fermi surface, which is just located near the DLC. The XMR of $beta$-ReO$_{2}$ is attributed to the small Fermi surface and thus is likely caused by the DLC.
The extremely large magnetoresistance (XMR) observed in many topologically nontrivial and trivial semimetals has attracted much attention in relation to its underlying physical mechanism. In this paper, by combining the band structure and Fermi surfa
Materials exhibiting large magnetoresistance may not only be of fundamental research interest, but also can lead to wide-ranging applications in magnetic sensors and switches. Here we demonstrate a large linear-in-field magnetoresistance, $Delta rho/
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron-
There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported re
Extremely large magnetoresistance (XMR) was recently discovered in many non-magnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here, we report an investigation of t