ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Losses of Magnetic Monopoles in Aluminum, Iron and Copper

57   0   0.0 ( 0 )
 نشر من قبل Zouleikha Sahnoun
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Energy Losses and Ranges of magnetic monopoles with magnetic charges $1g_{D}$, $2g_{D}$, $3g_{D}$, $6g_{D}$ and $9g_{D}$ in Aluminum, Iron and in Copper are computed, in the different regimes of velocities. The Restricted Energy Losses of monopoles with magnetic charges $1g_{D}$, $2g_{D}$ and $3g_{D}$ in Nuclear Track Detector is also given.



قيم البحث

اقرأ أيضاً

The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or metastable particles arising in various theoretical scenarios beyond the Standard Model. Its ph ysics goals --largely complementary to the multi-purpose LHC detectors ATLAS and CMS-- are accomplished by the deployment of plastic nuclear track detectors combined with trapping volumes for capturing charged highly ionising particles and TimePix pixel devices for monitoring. This paper focuses on the status of the detectors and the prospects for LHC Run II.
Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the regio n of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.
Polyimide-based materials, like Kapton, are widely used in flexible cables and circuitry due to their unique electrical and mechanical characteristics. This study is aimed at investigating the radiopurity of Kapton for use in ultralow background, rar e-event physics applications by measuring the $^{238}$U, $^{232}$Th, and $^{nat}$K levels using inductively coupled plasma mass spectrometry. Commercial-off-the-shelf Kapton varieties, measured at approximately 950 and 120 pg/g $^{238}$U and $^{232}$Th (1.2$times$10$^4$ and 490 $mu$Bq/kg), respectively, can be a significant background source for many current and next-generation ultralow background detectors. This study has found that the dominant contamination is due to the use of dicalcium phosphate (DCP), a nonessential slip additive added during manufacturing. Alternative Kapton materials were obtained that did not contain DCP and were determined to be significantly more radiopure than the commercially-available options with 12 and 19 pg/g $^{238}$U and $^{232}$Th (150 and 77 $mu$Bq/kg), respectively. The lowest radioactivity version produced (Kapton ELJ, which contains an adhesive) was found to contain single digit pg/g levels of $^{238}$U and $^{232}$Th, two-to-three orders of magnitude cleaner than commercial-off-the-shelf options. Moreover, copper-clad polyimide laminates employing Kapton ELJ as the insulator were obtained and shown to be very radiopure at 8.6 and 22 pg/g $^{238}$U and $^{232}$Th (110 and 89 $mu$Bq/kg), respectively.
Clean materials are required to construct and operate many low-background physics experiments. High-purity copper has found broad use because of its physical properties and availability. In this paper, we describe methods to assay and mitigate $^{210 }$Pb contamination on copper surfaces, such as from exposure to environmental radon or coming from bulk impurities. We evaluated the efficacy of wet etching on commercial samples and observed that $^{210}$Po contamination from the copper bulk does not readily pass into solution. During the etch, the polonium appears to trap at the copper-etchant boundary, such that it is effectively concentrated at the copper surface. We observed a different behavior for $^{210}$Pb; high-sensitivity measurements of the alpha emissivity versus time indicate the lowest level of $^{210}$Pb contamination ever reported for a commercial copper surface: $0pm12$ nBq/cm$^2$ (1$sigma$). Additionally, we have demonstrated the effectiveness of mitigating trace $^{210}$Pb and $^{210}$Po surface backgrounds using custom, high-purity electroplating techniques. These approaches were evaluated utilizing assays performed with an XIA UltraLo-1800 alpha spectrometer.
We measured the response of BAS-TR imaging plate (IP) to energetic aluminum ions in the 0 to 222 MeV energy range, and compared it with predictions from a Monte Carlo simulation code using two different IP models. Energetic aluminum ions were produce d with an intense laser pulse, and the response was evaluated from cross-calibration between CR-39 track detector and IP energy spectrometer. For the first time, we obtained the response function of the BAS-TR IP for aluminum ions in the energy range from 0 to 222 MeV. Notably the IP sensitivity in the exponential model is nearly constant from 36 MeV to 160 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا