ﻻ يوجد ملخص باللغة العربية
Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.
PEN is an industrial polyester plastic which has become interesting for the physics community as a new type of plastic scintillator. PEN scintillates in the blue regime, which is ideal for most photosensor devices. In addition, PEN has excellent mech
We characterize two 40 kBq sources of electrodeposited Th-228 for use in low-background experiments. The sources efficiently emanate Rn-220, a noble gas that can diffuse in a detector volume. Rn-220 and its daughter isotopes produce alpha, beta, and
We report a novel correlated background in the antineutrino detection using the inverse beta decay reaction. Spontaneous fissions and $(alpha,n)$ reactions in peripheral materials of the antineutrino detector, such as borosilicate glass of photomulti
Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. W
Nuclear recoil backgrounds are one of the most dangerous backgrounds for many dark matter experiments. A primary source of nuclear recoils is radiogenic neutrons produced in the detector material itself. These neutrons result from fission and $(alpha