ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation and mitigation of trace $^{210}$Pb contamination on copper surfaces

87   0   0.0 ( 0 )
 نشر من قبل Robert Calkins
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clean materials are required to construct and operate many low-background physics experiments. High-purity copper has found broad use because of its physical properties and availability. In this paper, we describe methods to assay and mitigate $^{210}$Pb contamination on copper surfaces, such as from exposure to environmental radon or coming from bulk impurities. We evaluated the efficacy of wet etching on commercial samples and observed that $^{210}$Po contamination from the copper bulk does not readily pass into solution. During the etch, the polonium appears to trap at the copper-etchant boundary, such that it is effectively concentrated at the copper surface. We observed a different behavior for $^{210}$Pb; high-sensitivity measurements of the alpha emissivity versus time indicate the lowest level of $^{210}$Pb contamination ever reported for a commercial copper surface: $0pm12$ nBq/cm$^2$ (1$sigma$). Additionally, we have demonstrated the effectiveness of mitigating trace $^{210}$Pb and $^{210}$Po surface backgrounds using custom, high-purity electroplating techniques. These approaches were evaluated utilizing assays performed with an XIA UltraLo-1800 alpha spectrometer.

قيم البحث

اقرأ أيضاً

We established a method to assay $^{210}$Pb and $^{210}$Po contaminations in the bulk of copper samples using a low-background alpha particle counter. The achieved sensitivity for the $^{210}$Pb and $^{210}$Po contaminations reaches a few mBq/kg. Due to this high sensitivity, the $^{210}$Pb and $^{210}$Po contaminations in oxygen free copper bulk were identified and measured for the first time. The $^{210}$Pb contaminations of our oxygen free copper samples were 17-40 mBq/kg. Based on our investigation of copper samples in each production step, the $^{210}$Pb in oxygen free copper was understood to be a small residual of an electrolysis process. This method to measure bulk contaminations of $^{210}$Pb and $^{210}$Po could be applied to other materials.
The next generation low-background detectors operating deep underground aim for unprecedented low levels of radioactive backgrounds. The deposition and presence of radon progeny on detector surfaces is an added source of energetic background events. In addition to limiting the detector materials radon exposure in order to reduce potential surface backgrounds, it is just as important to clean surfaces to remove inevitable contamination. Such studies of radon progeny removal have generally found that a form of etching is effective at removing some of the progeny (Bi and Pb), however more aggressive techniques, including electropolishing, have been shown to effectively remove the Po atoms. In the absence of an aggressive etch, a significant fraction of the Po atoms are believed to either remain behind within the surface or redeposit from the etching solution back onto the surface. We explore the chemical nature of the aqueous Po ions and the effect of the oxidation state of Po to maximize the Po ions remaining in the etching solution of contaminated Cu surfaces. We present a review of the previous studies of surface radon progeny removal and our findings on the role of oxidizing agents and a cell potential in the preparation of a clean etching technique.
In this work, the $^{222}$Rn contamination mechanisms on acrylic surfaces have been investigated. $^{222}$Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks t o its purity and transparency. Four acrylic samples have been exposed to a $^{222}$Rn rich environment for different time periods, being contaminated by $^{222}$Rn and its progenies. Subsequently, the time evolution of radiocontaminants activity on the samples has been evaluated with $alpha$ and $gamma$ measurements, highlighting the role of different decay modes in the contamination process. A detailed analysis of the alpha spectra allowed to quantify the implantation depth of the contaminants. Moreover, a study of both $alpha$ and $gamma$ measurements pointed out the $^{222}$Rn diffusion inside the samples.
Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are determined using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) after anion exchange col umn separation of dissolved lead samples. The 210Pb concentration is inferred through {alpha}-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po {alpha}-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from b{eta}-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sources of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6-15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1-75 Bq/kg, as inferred by the 210Po {alpha}-spectroscopy assay method.
The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH- based FPGA, of which the design-level flip-flops and embedded block RAMs are single event upset (SEU) sensitive in the harsh space environment. Therefore to comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا