ترغب بنشر مسار تعليمي؟ اضغط هنا

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

88   0   0.0 ( 0 )
 نشر من قبل Sebastian Nowozin
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative neural samplers are probabilistic models that implement sampling using feedforward neural networks: they take a random input vector and produce a sample from a probability distribution defined by the network weights. These models are expressive and allow efficient computation of samples and derivatives, but cannot be used for computing likelihoods or for marginalization. The generative-adversarial training method allows to train such models through the use of an auxiliary discriminative neural network. We show that the generative-adversarial approach is a special case of an existing more general variational divergence estimation approach. We show that any f-divergence can be used for training generative neural samplers. We discuss the benefits of various choices of divergence functions on training complexity and the quality of the obtained generative models.



قيم البحث

اقرأ أيضاً

Probabilistic models are often trained by maximum likelihood, which corresponds to minimizing a specific f-divergence between the model and data distribution. In light of recent successes in training Generative Adversarial Networks, alternative non-l ikelihood training criteria have been proposed. Whilst not necessarily statistically efficient, these alternatives may better match user requirements such as sharp image generation. A general variational method for training probabilistic latent variable models using maximum likelihood is well established; however, how to train latent variable models using other f-divergences is comparatively unknown. We discuss a variational approach that, when combined with the recently introduced Spread Divergence, can be applied to train a large class of latent variable models using any f-divergence.
We propose a new neural sequence model training method in which the objective function is defined by $alpha$-divergence. We demonstrate that the objective function generalizes the maximum-likelihood (ML)-based and reinforcement learning (RL)-based ob jective functions as special cases (i.e., ML corresponds to $alpha to 0$ and RL to $alpha to1$). We also show that the gradient of the objective function can be considered a mixture of ML- and RL-based objective gradients. The experimental results of a machine translation task show that minimizing the objective function with $alpha > 0$ outperforms $alpha to 0$, which corresponds to ML-based methods.
Modern applications of Bayesian inference involve models that are sufficiently complex that the corresponding posterior distributions are intractable and must be approximated. The most common approximation is based on Markov chain Monte Carlo, but th ese can be expensive when the data set is large and/or the model is complex, so more efficient variational approximations have recently received considerable attention. The traditional variational methods, that seek to minimize the Kullback--Leibler divergence between the posterior and a relatively simple parametric family, provide accurate and efficient estimation of the posterior mean, but often does not capture other moments, and have limitations in terms of the models to which they can be applied. Here we propose the construction of variational approximations based on minimizing the Fisher divergence, and develop an efficient computational algorithm that can be applied to a wide range of models without conjugacy or potentially unrealistic mean-field assumptions. We demonstrate the superior performance of the proposed method for the benchmark case of logistic regression.
Variational Inference (VI) is a popular alternative to asymptotically exact sampling in Bayesian inference. Its main workhorse is optimization over a reverse Kullback-Leibler divergence (RKL), which typically underestimates the tail of the posterior leading to miscalibration and potential degeneracy. Importance sampling (IS), on the other hand, is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures. The quality of IS crucially depends on the choice of the proposal distribution. Ideally, the proposal distribution has heavier tails than the target, which is rarely achievable by minimizing the RKL. We thus propose a novel combination of optimization and sampling techniques for approximate Bayesian inference by constructing an IS proposal distribution through the minimization of a forward KL (FKL) divergence. This approach guarantees asymptotic consistency and a fast convergence towards both the optimal IS estimator and the optimal variational approximation. We empirically demonstrate on real data that our method is competitive with variational boosting and MCMC.
While the costs of human violence have attracted a great deal of attention from the research community, the effects of the network-on-network (NoN) violence popularised by Generative Adversarial Networks have yet to be addressed. In this work, we qua ntify the financial, social, spiritual, cultural, grammatical and dermatological impact of this aggression and address the issue by proposing a more peaceful approach which we term Generative Unadversarial Networks (GUNs). Under this framework, we simultaneously train two models: a generator G that does its best to capture whichever data distribution it feels it can manage, and a motivator M that helps G to achieve its dream. Fighting is strictly verboten and both models evolve by learning to respect their differences. The framework is both theoretically and electrically grounded in game theory, and can be viewed as a winner-shares-all two-player game in which both players work as a team to achieve the best score. Experiments show that by working in harmony, the proposed model is able to claim both the moral and log-likelihood high ground. Our work builds on a rich history of carefully argued position-papers, published as anonymous YouTube comments, which prove that the optimal solution to NoN violence is more GUNs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا