ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence

116   0   0.0 ( 0 )
 نشر من قبل Ghassen Jerfel
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational Inference (VI) is a popular alternative to asymptotically exact sampling in Bayesian inference. Its main workhorse is optimization over a reverse Kullback-Leibler divergence (RKL), which typically underestimates the tail of the posterior leading to miscalibration and potential degeneracy. Importance sampling (IS), on the other hand, is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures. The quality of IS crucially depends on the choice of the proposal distribution. Ideally, the proposal distribution has heavier tails than the target, which is rarely achievable by minimizing the RKL. We thus propose a novel combination of optimization and sampling techniques for approximate Bayesian inference by constructing an IS proposal distribution through the minimization of a forward KL (FKL) divergence. This approach guarantees asymptotic consistency and a fast convergence towards both the optimal IS estimator and the optimal variational approximation. We empirically demonstrate on real data that our method is competitive with variational boosting and MCMC.



قيم البحث

اقرأ أيضاً

The variational framework for learning inducing variables (Titsias, 2009a) has had a large impact on the Gaussian process literature. The framework may be interpreted as minimizing a rigorously defined Kullback-Leibler divergence between the approxim ating and posterior processes. To our knowledge this connection has thus far gone unremarked in the literature. In this paper we give a substantial generalization of the literature on this topic. We give a new proof of the result for infinite index sets which allows inducing points that are not data points and likelihoods that depend on all function values. We then discuss augmented index sets and show that, contrary to previous works, marginal consistency of augmentation is not enough to guarantee consistency of variational inference with the original model. We then characterize an extra condition where such a guarantee is obtainable. Finally we show how our framework sheds light on interdomain sparse approximations and sparse approximations for Cox processes.
Modern applications of Bayesian inference involve models that are sufficiently complex that the corresponding posterior distributions are intractable and must be approximated. The most common approximation is based on Markov chain Monte Carlo, but th ese can be expensive when the data set is large and/or the model is complex, so more efficient variational approximations have recently received considerable attention. The traditional variational methods, that seek to minimize the Kullback--Leibler divergence between the posterior and a relatively simple parametric family, provide accurate and efficient estimation of the posterior mean, but often does not capture other moments, and have limitations in terms of the models to which they can be applied. Here we propose the construction of variational approximations based on minimizing the Fisher divergence, and develop an efficient computational algorithm that can be applied to a wide range of models without conjugacy or potentially unrealistic mean-field assumptions. We demonstrate the superior performance of the proposed method for the benchmark case of logistic regression.
299 - Taisuke Kobayashi 2021
This paper addresses a new interpretation of reinforcement learning (RL) as reverse Kullback-Leibler (KL) divergence optimization, and derives a new optimization method using forward KL divergence. Although RL originally aims to maximize return indir ectly through optimization of policy, the recent work by Levine has proposed a different derivation process with explicit consideration of optimality as stochastic variable. This paper follows this concept and formulates the traditional learning laws for both value function and policy as the optimization problems with reverse KL divergence including optimality. Focusing on the asymmetry of KL divergence, the new optimization problems with forward KL divergence are derived. Remarkably, such new optimization problems can be regarded as optimistic RL. That optimism is intuitively specified by a hyperparameter converted from an uncertainty parameter. In addition, it can be enhanced when it is integrated with prioritized experience replay and eligibility traces, both of which accelerate learning. The effects of this expected optimism was investigated through learning tendencies on numerical simulations using Pybullet. As a result, moderate optimism accelerated learning and yielded higher rewards. In a realistic robotic simulation, the proposed method with the moderate optimism outperformed one of the state-of-the-art RL method.
Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback -Leibler divergence, and depends on a parameter that is called its order. In particular, the Renyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Renyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average app roach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا