ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-relativistic anyons from holography

76   0   0.0 ( 0 )
 نشر من قبل Niko Jokela
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $theta$. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and find that the Einstein relation always holds.

قيم البحث

اقرأ أيضاً

We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the c urrent and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.
We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and momentum-dissipating processes. The computations are performed within the gauge/grav ity framework where the momentum dissipation mechanism is introduced by including a mass term for the bulk graviton. Relying on the structure of the computed transport coefficients and promoting the parameters to become dynamical functions, we propose a holography inspired phenomenology open to a direct comparison with experimental data from the cuprates.
235 - Yan Liu , Junkun Zhao 2018
We study a holographic model which exhibits a quantum phase transition from the strongly interacting Weyl semimetal phase to an insulating phase. In the holographic insulating phase there is a hard gap in the real part of frequency dependent diagonal conductivities. However, the anomalous Hall conductivity is nonzero at zero frequency, indicting that it is a Chern insulator. This holographic quantum phase transition is always of first order, signified by a discontinuous anomalous Hall conductivity at the phase transition, in contrast to the very continuous holographic Weyl semimetal/trivial semimetal phase transition. Our work reveals the novel phase structure of strongly interacting Weyl semimetal.
We report analytically known states at non-zero temperature which may serve as a powerful tool to reveal common topological and thermodynamic properties of systems ranging from the QCD phase diagram to topological phase transitions in condensed matte r materials. In the holographically dual gravity theory, these are analytic solutions to a five-dimensional non-linear-sigma (Skyrme) model dynamically coupled to Einstein gravity. This theory is shown to be holographically dual to $mathcal{N}=4$ Super-Yang-Mills theory coupled to an $SU(2)$-current. All solutions are fully backreacted asymptotically Anti-de Sitter~(AdS) black branes or holes. One family of global AdS black hole solutions contains non-Abelian gauge field configurations with positive integer Chern numbers and finite energy density. Larger Chern numbers increase the Hawking-Page transition temperature. In the holographically dual field theory this indicates a significant effect on the deconfinement phase transition. Black holes with one Hawking temperature can have distinct Chern numbers, potentially enabling topological transitions. A second family of analytic solutions, rotating black branes, is also provided. These rotating solutions induce states with propagating charge density waves in the dual field theory. We compute the Hawking temperature, entropy density, angular velocity and free energy for these black holes/branes. These correspond to thermodynamic data in the dual field theory. For these states the energy-momentum tensor, (non-)conserved current, and topological charge are interpreted.
We present a general algorithm for constructing the holographic dictionary for Lifshitz and hyperscaling violating Lifshitz backgrounds for any value of the dynamical exponent $z$ and any value of the hyperscaling violation parameter $theta$ compatib le with the null energy condition. The objective of the algorithm is the construction of the general asymptotic solution of the radial Hamilton-Jacobi equation subject to the desired boundary conditions, from which the full dictionary can be subsequently derived. Contrary to the relativistic case, we find that a fully covariant construction of the asymptotic solution for running non-relativistic theories necessitates an expansion in the eigenfunctions of two commuting operators instead of one. This provides a covariant but non-relativistic grading of the expansion, according to the number of time derivatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا