ﻻ يوجد ملخص باللغة العربية
We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and momentum-dissipating processes. The computations are performed within the gauge/gravity framework where the momentum dissipation mechanism is introduced by including a mass term for the bulk graviton. Relying on the structure of the computed transport coefficients and promoting the parameters to become dynamical functions, we propose a holography inspired phenomenology open to a direct comparison with experimental data from the cuprates.
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $the
We study a holographic model which exhibits a quantum phase transition from the strongly interacting Weyl semimetal phase to an insulating phase. In the holographic insulating phase there is a hard gap in the real part of frequency dependent diagonal
We employ hydrodynamics and gauge/gravity to study magneto-transport in phases of matter where translations are broken (pseudo-)spontaneously. First we provide a hydrodynamic description of systems where translations are broken homogeneously at nonze
We present effective field theories for the weakly coupled Weyl-$mathrm{Z}_2$ semimetal, as well as the holographic realization for the strongly coupled case. In both cases, the anomalous systems have both the chiral anomaly and the $mathrm{Z}_2$ ano
We apply the quantum renormalization group to construct a holographic dual for the U(N) vector model for complex bosons defined on a lattice. The bulk geometry becomes dynamical as the hopping amplitudes which determine connectivity of space are prom