ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed

127   0   0.0 ( 0 )
 نشر من قبل Jacques-Robert Delorme
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions. With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to $2,10^{-8}$ between 5 and 17$,lambda_0/D$ in monochromatic light (640 nm). We also reach contrast levels of $4,10^{-8}$ between 7 and 17$lambda_0/D$ in broadband ($lambda_0=675$ nm, $Deltalambda=250$ nm and $Deltalambda / lambda_0 = 40$ %), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph. The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim at detecting and spectrally characterizing old or light gaseous planets.



قيم البحث

اقرأ أيضاً

120 - Olivier Guyon 2009
The Phase-Induced Amplitude Apodization (PIAA) coronagraph is a high performance coronagraph concept able to work at small angular separation with little loss in throughput. We present results obtained with a laboratory PIAA system including active w avefront control. The system has a 94.3% throughput (excluding coating losses) and operates in air with monochromatic light. Our testbed achieved a 2.27e-7 raw contrast between 1.65 lambda/D (inner working angle of the coronagraph configuration tested) and 4.4 lambda/D (outer working angle). Through careful calibration, we were able to separate this residual light into a dynamic coherent component (turbulence, vibrations) at 4.5e-8 contrast and a static incoherent component (ghosts and/or polarization missmatch) at 1.6e-7 contrast. Pointing errors are controlled at the 1e-3 lambda/D level using a dedicated low order wavefront sensor. While not sufficient for direct imaging of Earth-like planets from space, the 2.27e-7 raw contrast achieved already exceeds requirements for a ground-based Extreme Adaptive Optics system aimed at direct detection of more massive exoplanets. We show that over a 4hr long period, averaged wavefront errors have been controlled to the 3.5e-9 contrast level. This result is particularly encouraging for ground based Extreme-AO systems relying on long term stability and absence of static wavefront errors to recover planets much fainter than the fast boiling speckle halo.
We discuss the results of a multi-wavelength differential imaging lab experiment with the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory. The HCIT combines a Lyot coronagraph with a Xinetics deformable mirror in a vacuum enviro nment to simulate a space telescope in order to test technologies and algorithms for a future exoplanet coronagraph mission. At present, ground based telescopes have achieved significant attenuation of speckle noise using the technique of spectral differential imaging (SDI). We test whether ground-based SDI can be generalized to a non-simultaneous spectral differential imaging technique (NSDI) for a space mission. In our lab experiment, a series of 5 filter images centered around the O2(A) absorption feature at 0.762 um were acquired at nominal contrast values of 10^-6, 10^-7, 10^-8, and 10^-9. Outside the dark hole, single differences of images improve contrast by a factor of ~6. Inside the dark hole, we found significant speckle chromatism as a function of wavelength offset from the nulling wavelength, leading to a contrast degradation by a factor of 7.2 across the entire ~80 nm bandwidth. This effect likely stems from the chromatic behavior of the current occulter. New, less chromatic occulters are currently in development; we expect that these new occulters will resolve the speckle chromatism issue.
Future high-contrast imagers on ground-based extremely large telescopes will have to deal with the segmentation of the primary mirrors. Residual phase errors coming from the phase steps at the edges of the segments will have to be minimized in order to reach the highest possible wavefront correction and thus the best contrast performance. To study these effects, we have developed the MITHIC high-contrast testbed, which is designed to test various strategies for wavefront sensing, including the Zernike sensor for Extremely accurate measurements of Low-level Differential Aberrations (ZELDA) and COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection (COFFEE). We recently equipped the bench with a new atmospheric turbulence simulation module that offers both static phase patterns representing segmented primary mirrors and continuous phase strips representing atmospheric turbulence filtered by an AO or an XAO system. We present a characterisation of the module using different instruments and wavefront sensors, and the first coronagraphic measurements obtained on MITHIC.
The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^{-6}$ for a companion with angular displacement as small as $4~lambda/D$ with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or optimized pupil plane phase element alone.
A large number of coronagraphs have been proposed to overcome the ratio that exists between the star and its planet. The planet finder of the Extremely Large Telescope, which is called EPICS, will certainly need a more efficient coronagraph than the ones that have been developed so far. We propose to use a combination of chromatic Four Quadrant Phase Mask coronagraph to achromatize the dephasing of the device while maintaining a high rejection performance. After describing this multi-stage FQPM coronagraph, we show preliminary results of a study on its capabilities in the framework of the EPICS instrument, the planet finder of the European Extremely Large Telescope. Eventually, we present laboratory tests of a rough prototype of a multi-stage four-quadrant phase mask. On one hand, we deduce from our laboratory data that a detection at the 10^-10 level is feasible in monochromatic light. On the other hand, we show the detection of a laboratory companion fainter than 10^-8 with a spectral bandwidth larger than 20%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا