ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory and laboratory tests of the multi-stage phase mask coronagraph

67   0   0.0 ( 0 )
 نشر من قبل Pierre Baudoz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large number of coronagraphs have been proposed to overcome the ratio that exists between the star and its planet. The planet finder of the Extremely Large Telescope, which is called EPICS, will certainly need a more efficient coronagraph than the ones that have been developed so far. We propose to use a combination of chromatic Four Quadrant Phase Mask coronagraph to achromatize the dephasing of the device while maintaining a high rejection performance. After describing this multi-stage FQPM coronagraph, we show preliminary results of a study on its capabilities in the framework of the EPICS instrument, the planet finder of the European Extremely Large Telescope. Eventually, we present laboratory tests of a rough prototype of a multi-stage four-quadrant phase mask. On one hand, we deduce from our laboratory data that a detection at the 10^-10 level is feasible in monochromatic light. On the other hand, we show the detection of a laboratory companion fainter than 10^-8 with a spectral bandwidth larger than 20%.

قيم البحث

اقرأ أيضاً

Less than 3% of the known exoplanets were directly imaged for two main reasons. They are angularly very close to their parent star, which is several magnitudes brighter. Direct imaging of exoplanets thus requires a dedicated instrumentation with larg e telescopes and accurate wavefront control devices for high-angular resolution and coronagraphs for attenuating the stellar light. Coronagraphs are usually chromatic and they cannot perform high-contrast imaging over a wide spectral bandwidth. That chromaticity will be critical for future instruments. Enlarging the coronagraph spectral range is a challenge for future exoplanet imaging instruments on both space-based and ground-based telescopes. We propose the multi-stage four-quadrant phase mask that associates several monochromatic four-quadrant phase mask coronagraphs in series. Monochromatic device performance has already been demonstrated and the manufacturing procedures are well-under control since their development for previous instruments on VLT and JWST. The multi-stage implementation simplicity is thus appealing. We present the instrument principle and we describe the laboratory performance for large spectral bandwidths and for both pupil shapes for space- (off-axis telescope) and ground-based (E-ELT) telescopes. The multi-stage four-quadrant phase mask reduces the stellar flux over a wide spectral range (30%) and it is a very good candidate to be associated with a spectrometer for future exoplanet imaging instruments in ground- and space-based observatories.
132 - N. Murakami , R. Uemura , N. Baba 2008
We present numerical simulations and laboratory experiments on an eight-octant phase-mask (EOPM) coronagraph. The numerical simulations suggest that an achievable contrast for the EOPM coronagraph can be greatly improved as compared to that of a four -quadrant phase-mask (FQPM) coronagraph for a partially resolved star. On-sky transmission maps reveal that the EOPM coronagraph has relatively high optical throughput, a small inner working angle and large discovery space. We have manufactured an eight-segment phase mask utilizing a nematic liquid-crystal device, which can be easily switched between the FQPM and the EOPM modes. The laboratory experiments demonstrate that the EOPM coronagraph has a better tolerance of the tip-tilt error than the FQPM one. We also discuss feasibility of a fully achromatic and high-throughput EOPM coronagraph utilizing a polarization interferometric technique.
Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the dire ct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions. With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to $2,10^{-8}$ between 5 and 17$,lambda_0/D$ in monochromatic light (640 nm). We also reach contrast levels of $4,10^{-8}$ between 7 and 17$lambda_0/D$ in broadband ($lambda_0=675$ nm, $Deltalambda=250$ nm and $Deltalambda / lambda_0 = 40$ %), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph. The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim at detecting and spectrally characterizing old or light gaseous planets.
In this paper, we propose a learning-based approach for denoising raw videos captured under low lighting conditions. We propose to do this by first explicitly aligning the neighboring frames to the current frame using a convolutional neural network ( CNN). We then fuse the registered frames using another CNN to obtain the final denoised frame. To avoid directly aligning the temporally distant frames, we perform the two processes of alignment and fusion in multiple stages. Specifically, at each stage, we perform the denoising process on three consecutive input frames to generate the intermediate denoised frames which are then passed as the input to the next stage. By performing the process in multiple stages, we can effectively utilize the information of neighboring frames without directly aligning the temporally distant frames. We train our multi-stage system using an adversarial loss with a conditional discriminator. Specifically, we condition the discriminator on a soft gradient mask to prevent introducing high-frequency artifacts in smooth regions. We show that our system is able to produce temporally coherent videos with realistic details. Furthermore, we demonstrate through extensive experiments that our approach outperforms state-of-the-art image and video denoising methods both numerically and visually.
Over the past two decades, thousands of confirmed exoplanets have been detected; the next major challenge is to characterize these other worlds and their stellar systems. Much information on the composition and formation of exoplanets and circumstell ar debris disks can only be achieved via direct imaging. Direct imaging is challenging because of the small angular separations ($<1$ arcsec) and high star-to-planet flux ratios (${sim}10^{9}$ for a Jupiter analog or ${sim}10^{10}$ for an Earth analog in the visible). Atmospheric turbulence prohibits reaching such high flux ratios on the ground, so observations must be made above the Earths atmosphere. The Nancy Grace Roman Space Telescope (Roman), set to launch in the mid-2020s, will be the first space-based observatory to demonstrate high-contrast imaging with active wavefront control using its Coronagraph Instrument. The instruments main purpose is to mature the various technologies needed for a future flagship mission to image and characterize Earth-like exoplanets. These technologies include two high-actuator-count deformable mirrors, photon-counting detectors, two complementary wavefront sensing and control loops, and two different coronagraph types. In this paper, we describe the complete set of flight coronagraph mask designs and their intended combinations in the Roman Coronagraph Instrument. There are three types of mask configurations included: a primary one designed to meet the instruments top-level requirement, three that are supported on a best-effort basis, and several unsupported ones contributed by the NASA Exoplanet Exploration Program. The unsupported mask configurations could be commissioned and used if the instrument is approved for operations after its initial technology demonstration phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا