ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning

117   0   0.0 ( 0 )
 نشر من قبل Wouter Koolen
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability.



قيم البحث

اقرأ أيضاً

In online convex optimization it is well known that certain subclasses of objective functions are much easier than arbitrary convex functions. We are interested in designing adaptive methods that can automatically get fast rates in as many such subcl asses as possible, without any manual tuning. Previous adaptive methods are able to interpolate between strongly convex and general convex functions. We present a new method, MetaGrad, that adapts to a much broader class of functions, including exp-concave and strongly convex functions, but also various types of stochastic and non-stochastic functions without any curvature. For instance, MetaGrad can achieve logarithmic regret on the unregularized hinge loss, even though it has no curvature, if the data come from a favourable probability distribution. MetaGrads main feature is that it simultaneously considers multiple learning rates. Unlike previous methods with provable regret guarantees, however, its learning rates are not monotonically decreasing over time and are not tuned based on a theoretically derived bound on the regret. Instead, they are weighted directly proportional to their empirical performance on the data using a tilted exponential weights master algorithm.
We aim to design adaptive online learning algorithms that take advantage of any special structure that might be present in the learning task at hand, with as little manual tuning by the user as possible. A fundamental obstacle that comes up in the de sign of such adaptive algorithms is to calibrate a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc. A recent technique promises to overcome this difficulty by maintaining multiple learning rates in parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization and the Squint algorithm for prediction with expert advice. However, in both cases the user still has to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set too small, the methods may fail completely; but if it is taken too large, performance deteriorates significantly. In the present work we remove this Lipschitz hyperparameter by designing n
We provide a new adaptive method for online convex optimization, MetaGrad, that is robust to general convex losses but achieves faster rates for a broad class of special functions, including exp-concave and strongly convex functions, but also various types of stochastic and non-stochastic functions without any curvature. We prove this by drawing a connection to the Bernstein condition, which is known to imply fast rates in offline statistical learning. MetaGrad further adapts automatically to the size of the gradients. Its main feature is that it simultaneously considers multiple learning rates, which are weighted directly proportional to their empirical performance on the data using a new meta-algorithm. We provide thr
We introduce the online stochastic Convex Programming (CP) problem, a very general version of stochastic online problems which allows arbitrary concave objectives and convex feasibility constraints. Many well-studied problems like online stochastic p acking and covering, online stochastic matching with concave returns, etc. form a special case of online stochastic CP. We present fast algorithms for these problems, which achieve near-optimal regret guarantees for both the i.i.d. and the random permutation models of stochastic inputs. When applied to the special case online packing, our ideas yield a simpler and faster primal-dual algorithm for this well studied problem, which achieves the optimal competitive ratio. Our techniques make explicit the connection of primal-dual paradigm and online learning to online stochastic CP.
Adversarial learning of probabilistic models has recently emerged as a promising alternative to maximum likelihood. Implicit models such as generative adversarial networks (GAN) often generate better samples compared to explicit models trained by max imum likelihood. Yet, GANs sidestep the characterization of an explicit density which makes quantitative evaluations challenging. To bridge this gap, we propose Flow-GANs, a generative adversarial network for which we can perform exact likelihood evaluation, thus supporting both adversarial and maximum likelihood training. When trained adversarially, Flow-GANs generate high-quality samples but attain extremely poor log-likelihood scores, inferior even to a mixture model memorizing the training data; the opposite is true when trained by maximum likelihood. Results on MNIST and CIFAR-10 demonstrate that hybrid training can attain high held-out likelihoods while retaining visual fidelity in the generated samples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا