ﻻ يوجد ملخص باللغة العربية
Adversarial learning of probabilistic models has recently emerged as a promising alternative to maximum likelihood. Implicit models such as generative adversarial networks (GAN) often generate better samples compared to explicit models trained by maximum likelihood. Yet, GANs sidestep the characterization of an explicit density which makes quantitative evaluations challenging. To bridge this gap, we propose Flow-GANs, a generative adversarial network for which we can perform exact likelihood evaluation, thus supporting both adversarial and maximum likelihood training. When trained adversarially, Flow-GANs generate high-quality samples but attain extremely poor log-likelihood scores, inferior even to a mixture model memorizing the training data; the opposite is true when trained by maximum likelihood. Results on MNIST and CIFAR-10 demonstrate that hybrid training can attain high held-out likelihoods while retaining visual fidelity in the generated samples.
We propose an adversarial training procedure for learning a causal implicit generative model for a given causal graph. We show that adversarial training can be used to learn a generative model with true observational and interventional distributions
Developments in deep generative models have allowed for tractable learning of high-dimensional data distributions. While the employed learning procedures typically assume that training data is drawn i.i.d. from the distribution of interest, it may be
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac
Multimodal learning has achieved great successes in many scenarios. Compared with unimodal learning, it can effectively combine the information from different modalities to improve the performance of learning tasks. In reality, the multimodal data ma