ﻻ يوجد ملخص باللغة العربية
This paper investigates the long-term behavior of an interacting particle system of interest in the hot topic of evolutionary game theory. Each site of the $d$-dimensional integer lattice is occupied by a player who is characterized by one of two possible strategies. Following the traditional modeling approach of spatial games, the configuration is turned into a payoff landscape that assigns a payoff to each player based on her strategy and the strategy of her neighbors. The payoff is then interpreted as a fitness, by having each player independently update their strategy at rate one by mimicking their neighbor with the largest payoff. With these rules, the mean-field approximation of the spatial game exhibits the same asymptotic behavior as the popular replicator equation. Except for a coexistence result that shows an agreement between the process and the mean-field model, our analysis reveals that the two models strongly disagree in many aspects, showing in particular that the presence of a spatial structure in the form of local interactions plays a key role. More precisely, in the parameter region where both strategies are evolutionary stable in the replicator equation, in the spatial model either one strategy wins or the system fixates to a configuration where both strategies are present. In addition, while defection is evolutionary stable for the prisoners dilemma game in the replicator equation, space favors cooperation in our model.
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi
A strong negative dependence property for measures on {0,1}^n - stability - was recently developed in [5], by considering the zero set of the probability generating function. We extend this property to the more general setting of reaction-diffusion p
We introduce a class of birth-and-death Polya urns, which allow for both sampling and removal of observations governed by an auxiliary inhomogeneous Bernoulli process, and investigate the asymptotic behaviour of the induced allelic partitions. By exp
We consider stochastic UL and LU block factorizations of the one-step transition probability matrix for a discrete-time quasi-birth-and-death process, namely a stochastic block tridiagonal matrix. The simpler case of random walks with only nearest ne
The cosmic stellar birth rate can be measured by standard astronomical techniques. It can also be probed via the cosmic stellar death rate, though until recently, this was much less precise. However, recent results based on measured supernova rates,