ﻻ يوجد ملخص باللغة العربية
A strong negative dependence property for measures on {0,1}^n - stability - was recently developed in [5], by considering the zero set of the probability generating function. We extend this property to the more general setting of reaction-diffusion processes and collections of independent Markov chains. In one dimension the generalized stability property is now independently interesting, and we characterize the birth-death chains preserving it.
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi
This paper investigates the long-term behavior of an interacting particle system of interest in the hot topic of evolutionary game theory. Each site of the $d$-dimensional integer lattice is occupied by a player who is characterized by one of two pos
We introduce a class of birth-and-death Polya urns, which allow for both sampling and removal of observations governed by an auxiliary inhomogeneous Bernoulli process, and investigate the asymptotic behaviour of the induced allelic partitions. By exp
We consider stochastic UL and LU block factorizations of the one-step transition probability matrix for a discrete-time quasi-birth-and-death process, namely a stochastic block tridiagonal matrix. The simpler case of random walks with only nearest ne
In this paper, a baseline model termed as random birth-and-death network model (RBDN) is considered, in which at each time step, a new node is added into the network with probability p (0<p <1) connect it with m old nodes uniformly, or an existing no