ﻻ يوجد ملخص باللغة العربية
We consider stochastic UL and LU block factorizations of the one-step transition probability matrix for a discrete-time quasi-birth-and-death process, namely a stochastic block tridiagonal matrix. The simpler case of random walks with only nearest neighbors transitions gives a unique LU factorization and a one-parameter family of factorizations in the UL case. The block structure considered here yields many more possible factorizations resulting in a much enlarged class of potential applications. By reversing the order of the factors (also known as a Darboux transformation) we get new families of quasi-birth-and-death processes where it is possible to identify the matrix-valued spectral measures in terms of a Geronimus (UL) or a Christoffel (LU) transformation of the original one. We apply our results to one example going with matrix-valued Jacobi polynomials arising in group representation theory. We also give urn models for some particular cases.
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi
We introduce a class of birth-and-death Polya urns, which allow for both sampling and removal of observations governed by an auxiliary inhomogeneous Bernoulli process, and investigate the asymptotic behaviour of the induced allelic partitions. By exp
The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and t
A strong negative dependence property for measures on {0,1}^n - stability - was recently developed in [5], by considering the zero set of the probability generating function. We extend this property to the more general setting of reaction-diffusion p
We show that any (real) generalized stochastic process over $mathbb{R}^{d}$ can be expressed as a linear transformation of a White Noise process over $mathbb{R}^{d}$. The procedure is done by using the regularity theorem for tempered distributions to