ﻻ يوجد ملخص باللغة العربية
We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in cite{M} to chemical potentials outside spectral gaps. The proof is based on Renormalization Group and is inspired by techniques developed to deal with KAM Lindstedt series.
We analyze the ground state localization properties of an array of identical interacting spinless fermionic chains with quasi-random disorder, using non-perturbative Renormalization Group methods. In the single or two chains case localization persist
Interacting spinning fermions with strong quasi-random disorder are analyzed via rigorous Renormalization Group (RG) methods combined with KAM techniques. The correlations are written in terms of an expansion whose convergence follows from number-the
We prove Anderson localization at the internal band-edges for periodic magnetic Schr{o}dinger operators perturbed by random vector potentials of Anderson-type. This is achieved by combining new results on the Lifshitz tails behavior of the integrated
Topological defects in low-dimensional non-linear systems feature a sliding-to-pinning transition of relevance for a variety of research fields, ranging from biophysics to nano- and solid-state physics. We find that the dynamics after a local excitat
Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be