ﻻ يوجد ملخص باللغة العربية
Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras $mathfrak{su}(2)$ and $mathfrak{su}(1,1)$ as well as to the q-deformed algebra $mathfrak{so}_q(3)$ at $q$ a root of unity are presented.
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group tra
In this comprehensive study of Kitaevs abelian models defined on a graph embedded on a closed orientable surface, we provide complete proofs of the topological ground state degeneracy, the absence of local order parameters, compute the entanglement e
We investigate the entanglement for a model of a particle moving in the lattice (many-body system). The interaction between the particle and the lattice is modelled using Hookes law. The Feynman path integral approach is applied to compute the densit
We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground
The statistical mechanics characterization of a finite subsystem embedded in an infinite system is a fundamental question of quantum physics. Nevertheless, a full closed form { for all required entropic measures} does not exist in the general case ev