ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement in Fermionic Chains and Bispectrality

125   0   0.0 ( 0 )
 نشر من قبل Rafael I. Nepomechie
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras $mathfrak{su}(2)$ and $mathfrak{su}(1,1)$ as well as to the q-deformed algebra $mathfrak{so}_q(3)$ at $q$ a root of unity are presented.



قيم البحث

اقرأ أيضاً

134 - Nick G. Jones , Noah Linden 2021
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group tra nsformations that can be described by matrix product operators (MPOs). We classify the translation invariant Clifford group transformations that consist of a shift operator and an MPO of bond dimension two -- this includes transformations that preserve locality of all Hamiltonians; as well as those that lead to non-local images of particular operators but nevertheless preserve locality of certain Hamiltonians. We characterise the translation invariant Clifford group transformations that take single-site Pauli operators to local operators on at most five sites -- examples of Quantum Cellular Automata -- leading to a discrete family of Hamiltonians that are equivalent to the canonical XXZ model under such transformations. For spin chains solvable by algebraic Bethe Ansatz, we explain how conjugating by a matrix product operator affects the underlying integrable structure. This allows us to relate our results to the usual classifications of integrable Hamiltonians. We also treat the case of spin chains solvable by free fermions.
121 - Sven Bachmann 2016
In this comprehensive study of Kitaevs abelian models defined on a graph embedded on a closed orientable surface, we provide complete proofs of the topological ground state degeneracy, the absence of local order parameters, compute the entanglement e ntropy exactly and characterise the elementary anyonic excitations. The homology and cohomolgy groups of the cell complex play a central role and allow for a rigorous understanding of the relations between the above characterisations of topological order.
We investigate the entanglement for a model of a particle moving in the lattice (many-body system). The interaction between the particle and the lattice is modelled using Hookes law. The Feynman path integral approach is applied to compute the densit y matrix of the system. The complexity of the problem is reduced by considering two-body system (bipartite system). The spatial entanglement of ground state is studied using the linear entropy. We find that increasing the confining potential implies a large spatial separation between the two particles. Thus the interaction between the particles increases according to Hookes law. This results in the increase in the spatial entanglement.
124 - Vieri Mastropietro 2016
We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in cite{M} to chemical potentials outside spectral gaps. The proof is based on Renormalization Group and is inspired by techniques developed to deal with KAM Lindstedt series.
The statistical mechanics characterization of a finite subsystem embedded in an infinite system is a fundamental question of quantum physics. Nevertheless, a full closed form { for all required entropic measures} does not exist in the general case ev en for free systems when the finite system in question is composed of several disjoint intervals. Here we develop a mathematical framework based on the Riemann-Hilbert approach to treat this problem in the one-dimensional case where the finite system is composed of two disjoint intervals and in the thermodynamic limit (both intervals and the space between them contains an infinite number of lattice sites and the result is given as a thermodynamic expansion). To demonstrate the usefulness of our method, we compute the change in the entanglement and negativity namely the spectrum of eigenvalues of the reduced density matrix with our without time reversal of one of the intervals. We do this in the case that the distance between the intervals is much larger than their size. The method we use can be easily applied to compute any power in an expansion in the ratio of the distance between the intervals to their size. {We expect these results to provide the necessary mathematical apparatus to address relevant questions in concrete physical scenarios, namely the structure and extent of quantum correlations in fermionic systems subject to local environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا