ترغب بنشر مسار تعليمي؟ اضغط هنا

Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

50   0   0.0 ( 0 )
 نشر من قبل Yasumasa Tsutsumi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method best suits for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle ($theta$) resolved zero energy density of states $N(theta)$. This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structure, including point and/or line nodes with linear and quadratic dispersions, by solving Eilenberger equation in vortex states. It is found that (A) the maxima of $N(theta)$ continuously shift from the anti-nodal to the nodal direction ($theta_{rm n}$) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (B) local minima emerge next to $theta_{rm n}$ on both sides except for the case of linear point node. These features are robust and detectable experimentally. Experimental results of $N(theta)$ performed on several superconductors, UPd$_2$Al$_3$, URu$_2$Si$_2$, Cu$_x$Bi$_2$Se$_3$, and UPt$_3$, are examined and commented in light of the present theory.

قيم البحث

اقرأ أيضاً

228 - Y. Matsuda , K. Izawa , 2006
Over the past two decades, unconventional superconductivity with gap symmetry other than s-wave has been found in several classes of materials, including heavy fermion (HF), high-T_c, and organic superconductors. Unconventional superconductivity is c haracterized by anisotropic superconducting gap functions, which may have zeros (nodes) along certain directions in the Brillouin zone. The nodal structure is closely related to the pairing interaction, and it is widely believed that the presence of nodes is a signature of magnetic or some other exotic, rather than conventional phonon-mediated, pairing mechanism. Therefore experimental determination of the gap function is of fundamental importance. However, the detailed gap structure, especially the direction of the nodes, is an unresolved issue in most unconventional superconductors. Recently it has been demonstrated that the thermal conductivity and specific heat measurements under magnetic field rotated relative to the crystal axes are a powerful method for determining the shape of the gap and the nodal directions in the bulk. Here we review the theoretical underpinnings of the method and the results for the nodal structure of several unconventional superconductors, including borocarbide YNi$_2$B$_2$C, heavy fermions UPd$_2$Al$_3$, CeCoIn$_5$, and PrOs$_4$Sb$_{12}$, organic superconductor, $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$, and ruthenate Sr$_2$RuO$_4$, determined by angular variation of the thermal conductivity and heat capacity.
By measuring angular-oscillation behavior of the heat capacity with respect to the applied field direction, one can detect the details of the gap structure. We introduce the Kramer-Pesch approximation (KPA) as a new method to analyze the field-angle- dependent experiments quantitatively. We calculate the zero energy density of states for various combinations of typical Fermi surfaces and superconducting gaps. The KPA yields a merit that one can quantitatively compare theoretical calculations with experimental results without involving heavy numerical computations, even for complicated Fermi surfaces. We show an inadequacy of the frequently-used Doppler-shift technique, which is remedied by application of the KPA.
In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angul ar oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).
The superconducting gap structure of heavy fermion UPd_2Al_3, in which unconventional superconductivity coexists with antiferromagnetic (AF) order with atomic size local moments, was investigated by the thermal conductivity measurements in a magnetic field rotating in various directions relative to the crystal axes. The results provide strong evidence that the gap function Delta(k) has a single line node orthogonal to the c-axis located at the AF Brillouin zone boundary, while Delta(k) is isotropic within the basal plane. The determined nodal structure is compatible with the resonance peak in the dynamical susceptibility observed in neutron inelastic scattering experiments. Based on these results, we conclude that the superconducting pairing function of UPd_2Al_3 is most likely to be d-wave with a form Delta(k)=Delta_0 cos(k_zc)
The structure of the superconducting order parameter in the iron-pnictide superconductor BaFe$_2$(As$_{0.67}$P$_{0.33}$)$_2$ ($T_c=31$,K) with line nodes is studied by the angle-resolved thermal conductivity measurements in a magnetic field rotated w ithin the basal plane. We find that the thermal conductivity displays distinct fourfold oscillations with minima when the field is directed at $pm45^circ$ with respect to the tetragonal a-axis. We discuss possible gap structures that can account for the data, and conclude that the observed results are most consistent with the closed nodal loops located at the flat parts of the electron Fermi surface with high Fermi velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا