ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting gap structure of CeIrIn5 from field-angle-resolved measurements of its specific heat

221   0   0.0 ( 0 )
 نشر من قبل Shunichiro Kittaka
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to identify the gap structure of CeIrIn5, we measured field-angle-resolved specific heat C(phi) by conically rotating the magnetic field H around the c axis at low temperatures down to 80 mK. We revealed that C(phi) exhibits a fourfold angular oscillation, whose amplitude decreases monotonically by tilting H out of the ab plane. Detailed microscopic calculations based on the quasiclassical Eilenberger equation confirm that the observed features are uniquely explained by assuming the dx2-y2-wave gap. These results strongly indicate that CeIrIn5 is a dx2-y2-wave superconductor and suggest the universal pairing mechanism in CeMIn5 (M = Co, Rh, and Ir).



قيم البحث

اقرأ أيضاً

The field-angle-resolved specific heat C(T,H,phi) of the f-electron superconductor CeRu2 (Tc=6.3 K) has been measured at low temperatures down to 90 mK on two single crystals of slightly different qualities. We reveal that the C(phi) oscillation in a rotating magnetic field, originating from the gap anisotropy, diminishes at low temperatures below the characteristic field H*, as expected for an anisotropic gap without nodes. We also observe the suppression of H* by decreasing the gap anisotropy ratio $Delta_{rm min}/Delta_{rm max}$, a behavior that has been predicted from a microscopic theory for anisotropic s-wave superconductors. The present technique is established as a powerful tool for investigating minimum-gap structures as well as nodal structures.
The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($si m 0.04T_{rm c}$). Except near $H_{rm c2}$, its fourfold specific-heat oscillation under an in-plane rotating magnetic field is unlikely to change its sign down to the lowest temperature of 0.06 K. This feature is qualitatively different from nodal quasiparticle excitations of a quasi-two-dimensional superconductor possessing vertical lines of gap minima. The overall specific-heat behavior of Sr$_2$RuO$_4$ can be explained by Doppler-shifted quasiparticles around horizontal line nodes on the Fermi surface, whose in-plane Fermi velocity is highly anisotropic, along with the occurrence of the Pauli-paramagnetic effect. These findings, in particular, the presence of horizontal line nodes in the gap, call for a reconsideration of the order parameter of Sr$_2$RuO$_4$.
Low-energy quasiparticle (QP) excitations in the heavy-fermion superconductor URu$_2$Si$_2$ were investigated by specific-heat $C(T, H, phi, theta)$ measurements of a high-quality single crystal. The occurrence of QP excitations due to the Doppler-sh ift effect was detected regardless of the field direction in $C(H)$ of the present clean sample, which is in sharp contrast to a previous report. Furthermore, the polar-angle-dependent $C(theta)$ measured under a rotating magnetic field within the ac plane exhibits a shoulder-like anomaly at $theta sim 45$ deg and a sharp dip at $theta = 90$ deg ($H parallel a$) in the moderate-field region. These features are supported by theoretical analyses based on microscopic calculations assuming the gap symmetry of $k_z(k_x+ik_y)$, whose gap structure is characterized by a combination of a horizontal line node at the equator and point nodes at the poles. The present results have settled the previous controversy over the gap structure of URu$_2$Si$_2$ and have authenticated its chiral $d$-wave superconductivity.
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat es reflecting the superconducting gap structure have been resolved for the first time. We also obtained strong evidence of multi-band superconductivity and concluded that the superconducting gap in the active band, responsible for the superconducting instability, is modulated with a minimum along the [100] direction.
191 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i ncluding a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable ($Delta$ $sim$ 11 meV) to that of the inner electron and hole pockets ($sim$12 meV), although it is substantially larger than that of the outer hole pocket ($sim$6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with $Delta$($k$) = $Delta$$_0$cos$k_x$cos$k_y$ formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا