ﻻ يوجد ملخص باللغة العربية
The structure of the superconducting order parameter in the iron-pnictide superconductor BaFe$_2$(As$_{0.67}$P$_{0.33}$)$_2$ ($T_c=31$,K) with line nodes is studied by the angle-resolved thermal conductivity measurements in a magnetic field rotated within the basal plane. We find that the thermal conductivity displays distinct fourfold oscillations with minima when the field is directed at $pm45^circ$ with respect to the tetragonal a-axis. We discuss possible gap structures that can account for the data, and conclude that the observed results are most consistent with the closed nodal loops located at the flat parts of the electron Fermi surface with high Fermi velocity.
We present a study of the superconducting gap structure in the iron-pnictide series BaFe2(As1-xPx)2. By measuring the variation of the specific heat as a function of temperature and magnetic field we are able to determine the number and Fermi surface
We report magnetic force microscopy (MFM) measurements on underdoped $BaFe_2(As_{1-x}P_x)_2$ ($x=0.26$) that show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic response repel vortices when
Measurements of the superconducting transition temperature, T_c, under hydrostatic pressure via bulk AC susceptibility were carried out on several concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The pressure dependence of unsubst
Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces
Over the past two decades, unconventional superconductivity with gap symmetry other than s-wave has been found in several classes of materials, including heavy fermion (HF), high-T_c, and organic superconductors. Unconventional superconductivity is c