ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Dipoles at Topological Defects in the Meissner State of a Nanostructured Superconductor

74   0   0.0 ( 0 )
 نشر من قبل Junyi Ge
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a magnetic field, superconductivity is manifested by total magnetic field expulsion (Meissner effect) or by the penetration of integer multiples of the flux quantum {Phi}_0. Here we present experimental results revealing magnetic dipoles formed by Meissner current flowing around artificially introduced topological defects (lattice of antidots). By using scanning Hall probe microscopy, we have detected ordered magnetic dipole lattice generated at spatially periodic antidots in a Pb superconducting film. While the conventional homogeneous Meissner state breaks down, the total magnetic flux of the magnetic dipoles remains quantized and is equal to zero. The observed magnetic dipoles strongly depend on the intensity and direction of the locally flowing Meissner current, making the magnetic dipoles an effective way to monitor the local supercurrent. We have also investigated the first step of the vortex depinning process, where, due to the generation of magnetic dipoles, the pinned Abrikosov vortices are deformed and shifted from their original pinning sites.



قيم البحث

اقرأ أيضاً

Topological spin configurations in proximity to a superconductor have recently attracted great interest due to the potential application of the former in spintronics and also as another platform for realizing non-trivial topological superconductors. Their application in these areas requires precise knowledge of the existing exchange fields and/or the stray-fields which are therefore essential for the study of these systems. Here, we determine the effective stray-field and the Meissner currents in a Superconductor/Ferromagnet/Superconductor (S/F/S) junction produced by various nonhomogenous magnetic textures in the F. The inhomogeneity arises either due to a periodic structure with flat domain walls (DW) or is caused by an isolated chiral magnetic skyrmion (Sk). We consider both Bloch- and N{e}el-type Sk and also analyze in detail the periodic structures of different types of DWs-- that is Bloch-type DW (BDW) and N{e}el-type DW (NDW) of finite width with in- and out-of-plane magnetization vector. The spatial dependence of the fields and Meissner currents are shown to be qualitatively different for the case of Bloch- and N{e}el-type magnetic textures. While the spatial distributions in the upper and lower S are identical for Bloch-type Sk and DWs they are asymmetric for the case of N{e}el-type magnetic textures. The depairing factor, which determines the critical temperature and which is related to vector potential of the stray-field, can have its maximum at the center of a magnetic domain but also, as we show, above the DW. For Sks the maximum is located at a finite distance within the Sk radius. Based on this, we study the nucleation of superconductivity in the presence of DWs. Because of the asymmetry for N{e}el-type structures, the critical temperature in the upper and lower S is expected to be different. The obtained results can also be applied to S/F bilayers.
The proximity coupled topological insulator / superconductor (TI/SC) bilayer system is a representative system to realize topological superconductivity. In order to better understand this unique state and design devices from the TI/SC bilayer, a comp rehensive understanding of the microscopic properties of the bilayer is required. In this work, a microwave Meissner screening study, which exploits a high-precision microwave resonator technique, is conducted on the SmB6/YB6 thin film bilayers as an example TI/SC system. The study reveals spatially dependent electrodynamic screening response of the TI/SC system that is not accessible to other techniques, from which the corresponding microscopic properties of a TI/SC bilayer can be obtained. The TI thickness dependence of the effective penetration depth suggests the existence of a bulk insulating region in the TI layer. The spatially dependent electrodynamic screening model analysis provides an estimate for the characteristic lengths of the TI/SC bilayer: normal penetration depth, normal coherence length, and the thickness of the surface states. We also discuss implications of these characteristic lengths on the design of a vortex Majorana device such as the radius of the vortex core, the energy splitting due to intervortex tunneling, and the minimum thickness required for a device.
Magnetic impurities deposited on topological superconductor candidate PbTaSe2 can introduce a non-splitting zero-energy state inside the superconducting gap, which has been proposed as a field-free platform for topological zero modes. However, it is still unclear how robust the topological state in PbTaSe2 is against magnetic impurities, which is related to the topological nature of the zero-energy state as well as its potential for quantum computation. In this work, we use scanning tunneling microscopy (STM) to study the topological surface state in the normal state of PbTaSe2 under the perturbation of magnetic impurities. We visualize the quasi-particle interference (QPI) arising from the topological surface state. We then deposit Fe impurities on the surface to form atomic Fe adatoms. We find that each Fe adatom sits at a unique interstitial position on the surface and features a local state at high energies, both of which are consistent with our first-principles calculation that further reveals its large magnetic moment. Our systematic Fe deposition and subsequent measurements show that the arc-like QPI pattern at the Fermi energy is robust with up to 3% Fe coverage where the atomic nature of Fe adatoms still holds. Our results provide evidence that the topological surface state at the Fermi energy in PbTaSe2 is robust against dilute magnetic impurities.
384 - C. W. Chu 1999
We have systematically investigated the magnetic, electrical, and structural properties of RuSr2GdCu2O8, in which a long-range ferromagnetic order and superconductivity have been previously reported to coexist. Based on the reversible magnetization r esults, we conclude that the bulk Meissner state does not exist in this compound and that the condensation energy associated with superconductivity is negligible. The absence of a bulk Meissner state and the superconductivity detected are thus attributed to the possible appearance of a sponge-like crypto-superconducting fine structure in RuSr2GdCu2O8 samples that are found to be chemically homogeneous to 1-2 mu m and electrically uniform to ~ 10 mu m across the sample.
The angular dependence of the nonlinear transverse magnetic moment of untwinned high-quality single crystals of optimally doped YBCO have been studied at a temperature of 2.5K using a low frequency AC technique. The absence of any signature at angula r period 2pi/4is analyzed in light of the numerical predictions of such a signal for a pure d-wave order parameter with line nodes. Implications of this null result for the existence of a non-zero gap at all angles on the Fermi surface are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا