ﻻ يوجد ملخص باللغة العربية
The proximity coupled topological insulator / superconductor (TI/SC) bilayer system is a representative system to realize topological superconductivity. In order to better understand this unique state and design devices from the TI/SC bilayer, a comprehensive understanding of the microscopic properties of the bilayer is required. In this work, a microwave Meissner screening study, which exploits a high-precision microwave resonator technique, is conducted on the SmB6/YB6 thin film bilayers as an example TI/SC system. The study reveals spatially dependent electrodynamic screening response of the TI/SC system that is not accessible to other techniques, from which the corresponding microscopic properties of a TI/SC bilayer can be obtained. The TI thickness dependence of the effective penetration depth suggests the existence of a bulk insulating region in the TI layer. The spatially dependent electrodynamic screening model analysis provides an estimate for the characteristic lengths of the TI/SC bilayer: normal penetration depth, normal coherence length, and the thickness of the surface states. We also discuss implications of these characteristic lengths on the design of a vortex Majorana device such as the radius of the vortex core, the energy splitting due to intervortex tunneling, and the minimum thickness required for a device.
We present microscopic, self-consistent calculations of the superconducting order parameter and pairing correlations near the interface of an $s$-wave superconductor and a three-dimensional topological insulator with spin-orbit coupling. We discuss t
In a search for a simple proximity system of a topological insulator and a superconductor for studying the role of surface versus bulk effects by gating, we report here on a first step toward this goal, namely the choice of such a system and its char
In this communication we consider generalities of the proximity effect in a contact between a conventional $s$-wave superconductor (S) nano-island and a thin film of a topological insulator (TI). A local hybridization coupling mechanism is considered
Superconductor-topological insulator (SC-TI) heterostructures were proposed to be a possible platform to realize and control Majorana zero-modes. Despite experimental signatures indicating their existence, univocal interpretation of the observed feat
In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that i