ﻻ يوجد ملخص باللغة العربية
We have systematically investigated the magnetic, electrical, and structural properties of RuSr2GdCu2O8, in which a long-range ferromagnetic order and superconductivity have been previously reported to coexist. Based on the reversible magnetization results, we conclude that the bulk Meissner state does not exist in this compound and that the condensation energy associated with superconductivity is negligible. The absence of a bulk Meissner state and the superconductivity detected are thus attributed to the possible appearance of a sponge-like crypto-superconducting fine structure in RuSr2GdCu2O8 samples that are found to be chemically homogeneous to 1-2 mu m and electrically uniform to ~ 10 mu m across the sample.
We report ac magnetic susceptibility and dc magnetization measurements on the superconducting ferromagnet UCoGe (with superconducting and Curie temperatures of $T_{{rm SC}} sim 0.5$~K and $T_{{rm Curie}} sim 2.5$~K, respectively). In the normal, ferr
A simple procedure to extract anisotropic London penetration depth components from the magnetic susceptibility measurements in realistic samples of cuboidal shape is described.
We calculate the change in susceptibility resulting from a thin sheet with reduced penetration depth embedded perpendicular to the surface of an isotropic superconductor, in a geometry applicable to scanning Superconducting QUantum Interference Devic
In a magnetic field, superconductivity is manifested by total magnetic field expulsion (Meissner effect) or by the penetration of integer multiples of the flux quantum {Phi}_0. Here we present experimental results revealing magnetic dipoles formed by
A detailed study of the effect caused by the partial substitution of Ru by Ir on the magnetic and superconducting properties of the ruthenocuprate Ru(1-x)Ir(x)Sr2GdCu2o8; 0 <= x <= 0.10; is presented. The combined experimental results of structural,