We consider a focusing Davey-Stewartson system and construct the solution of the Cauchy problem in the possible presence of exceptional points (and/or curves).
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t
o a discretization of one of the two spatial variables as a semi-discretization. In this paper, we construct an integrable semi-discrete Davey-Stewartson system, which is essentially different from the semi-discrete Davey-Stewartson system proposed in the previous paper arXiv:1904.07924. We first obtain integrable semi-discretizations of the two elementary flows that compose the Davey-Stewartson system by constructing their Lax-pair representations and show that these two elementary flows commute as in the continuous case. Then, we consider a linear combination of the two elementary flows to obtain a new integrable semi-discretization of the Davey-Stewartson system. Using a linear transformation of the continuous independent variables, one of the two elementary Davey-Stewartson flows can be identified with an integrable semi-discretization of the $(2+1)$-dimensional Yajima-Oikawa system proposed in https://link.aps.org/doi/10.1103/PhysRevE.91.062902 .
General dark solitons and mixed solutions consisting of dark solitons and breathers for the third-type Davey-Stewartson (DS-III) equation are derived by employing the bilinear method. By introducing the two differential operators, semi-rational solut
ions consisting of rogue waves, breathers and solitons are generated. These semi-rational solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. Under suitable parametric conditions, we derive general rogue wave solutions expressed in terms of rational functions. It is shown that the fundamental (simplest) rogue waves are line rogue waves. It is also shown that the multi-rogue waves describe interactions of several fundamental rogue waves, which would generate interesting curvy wave patterns. The higher order rogue waves originate from a localized lump and retreat back to it. Several types of hybrid solutions composed of rogue waves, breathers and solitons have also been illustrated. Specifically, these semi-rational solutions have a new phenomenon: lumps form on dark solitons and gradual separation from the dark solitons is observed.
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t
he literature, each elementary Davey-Stewartson flow is often called the Fokas system because it was studied by Fokas in the early 1990s. In fact, the integrability of the Davey-Stewartson system dates back to the work of Ablowitz and Haberman in 1975; the elementary Davey-Stewartson flows, as well as another integrable $(2+1)$-dimensional nonlinear Schrodinger equation $mathrm{i} q_{t} + q_{xy} + 2 qpartial_y^{-1}partial_x (|q|^2) =0$ proposed by Calogero and Degasperis in 1976, appeared explicitly in Zakharovs article published in 1980. By applying a linear change of the independent variables, an elementary Davey-Stewartson flow can be identified with a $(2+1)$-dimensional generalization of the integrable long wave-short wave interaction model, called the Yajima-Oikawa system: $mathrm{i} q_{t} + q_{xx} + u q=0$, $u_t + c u_y = 2(|q|^2)_x$. In this paper, we propose a new integrable semi-discretization (discretization of one of the two spatial variables, say $x$) of the Davey-Stewartson system by constructing its Lax-pair representation; the two elementary flows in the semi-discrete case indeed commute. By applying a linear change of the continuous independent variables to an elementary flow, we also obtain an integrable semi-discretization of the $(2+1)$-dimensional Yajima-Oikawa system.
A prototypical example of a rogue wave structure in a two-dimensional model is presented in the context of the Davey-Stewartson~II (DS~II) equation arising in water waves. The analytical methodology involves a Taylor expansion of an eigenfunctionof t
he models Lax pair which is used to form a hierarchy of infinitely many new eigenfunctions. These are used for the construction of two-dimensional (2D) rogue waves (RWs) of the DS~II equation by the even-fold Darboux transformation (DT). The obtained 2D RWs, which are localized in both space and time, can be viewed as a 2D analogue of the Peregrine soliton and are thus natural candidates to describe oceanic RW phenomena,as well as ones in 2D fluid systems and water tanks.
We study the spectral (linear) stability and orbital (nonlinear) stability of the elliptic solutions for the focusing modified Korteweg-de Vries (mKdV) equation with respect to subharmonic perturbations and construct the corresponding breather soluti
ons to exhibit the unstable or stable dynamic behavior. The elliptic function solutions of mKdV equation and the fundamental solutions of Lax pair are exactly represented by using the theta function. Based on the `modified squared wavefunction (MSW) method, we construct all linear independent solutions of the linearized KdV equation, and then provide a necessary and sufficient condition of the spectral stability for the elliptic function solutions with respect to subharmonic perturbations. In the case of spectrum stable, the orbital stability of the elliptic function solutions with respect to subharmonic perturbations is established under a suitable Hilbert space. Using Darboux-Backlund transformation, we construct the breather solutions to exhibit the unstable or stable dynamic behavior. Through analyzing the asymptotical behavior, we find the breather solution under the $mathrm{cn}$-background is equivalent to the elliptic function solution adding a small perturbation as $ttopminfty$.