ﻻ يوجد ملخص باللغة العربية
General dark solitons and mixed solutions consisting of dark solitons and breathers for the third-type Davey-Stewartson (DS-III) equation are derived by employing the bilinear method. By introducing the two differential operators, semi-rational solutions consisting of rogue waves, breathers and solitons are generated. These semi-rational solutions are given in terms of determinants whose matrix elements have simple algebraic expressions. Under suitable parametric conditions, we derive general rogue wave solutions expressed in terms of rational functions. It is shown that the fundamental (simplest) rogue waves are line rogue waves. It is also shown that the multi-rogue waves describe interactions of several fundamental rogue waves, which would generate interesting curvy wave patterns. The higher order rogue waves originate from a localized lump and retreat back to it. Several types of hybrid solutions composed of rogue waves, breathers and solitons have also been illustrated. Specifically, these semi-rational solutions have a new phenomenon: lumps form on dark solitons and gradual separation from the dark solitons is observed.
In this paper, the partially party-time ($PT$) symmetric nonlocal Davey-Stewartson (DS) equations with respect to $x$ is called $x$-nonlocal DS equations, while a fully $PT$ symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kin
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t
We consider a focusing Davey-Stewartson system and construct the solution of the Cauchy problem in the possible presence of exceptional points (and/or curves).
In this paper, we consider the real modified Korteweg-de Vries (mKdV) equation and construct a special kind of breather solution, which can be obtained by taking the limit $lambda_{j}$ $rightarrow$ $lambda_{1}$ of the Lax pair eigenvalues used in the