ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantization of the Damped Harmonic Oscillator Revisited

163   0   0.0 ( 0 )
 نشر من قبل Rodrigo Fresneda
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. We show the local equivalence between the two models and argue that latter has better high energy behavior and is naturally connected to existing open-quantum-systems approaches.



قيم البحث

اقرأ أيضاً

In this note we consider a one-dimensional quantum mechanical particle constrained by a parabolic well perturbed by a Gaussian potential. As the related Birman-Schwinger operator is trace class, the Fredholm determinant can be exploited in order to c ompute the modified eigenenergies which differ from those of the harmonic oscillator due to the presence of the Gaussian perturbation. By taking advantage of Wangs results on scalar products of four eigenfunctions of the harmonic oscillator, it is possible to evaluate quite accurately the two lowest-lying eigenvalues as functions of the coupling constant $lambda$.
This Letter is based on the $kappa$-Dirac equation, derived from the $kappa$-Poincar{e}-Hopf algebra. It is shown that the $kappa$-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac osc illator prescription, $mathbf{p}tomathbf{p}-imomegabetamathbf{r}$, in the $kappa$-Dirac equation, one obtains the $kappa$-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where $varepsilon=0$, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.
145 - John W. Sanders 2021
It is shown that the classical damped harmonic oscillator belongs to the family of fourth-order Pais-Uhlenbeck oscillators. It follows that the solutions to the damped harmonic oscillator equation make the Pais-Uhlenbeck action stationary. Two system atic approaches are given for deriving the Pais-Uhlenbeck action from the damped harmonic oscillator equation, and it may be possible to use these methods to identify stationary action principles for other dissipative systems which do not conform to Hamiltons principle. It is also shown that for every damped harmonic oscillator $x$, there exists a two-parameter family of dual oscillators $y$ satisfying the Pais-Uhlenbeck equation. The damped harmonic oscillator and any of its duals can be interpreted as a system of two coupled oscillators with atypical spring stiffnesses (not necessarily positive and real-valued). For overdamped systems, the resulting coupled oscillators should be physically achievable and may have engineering applications. Finally, a new physical interpretation is given for the optimal damping ratio $zeta=1/sqrt{2}$ in control theory.
157 - Andrey Pereverzev 2003
Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of initial states for the bath modes - grand canonical ensemble, number states and coherent states. It is shown that for a wide class of number stat es the behavior of the oscillator is similar to the case of the equilibrium bath. If the bath modes are initially in coherent states, then the variances of the oscillator coordinate and momentum, as well as its entanglement to the bath, asymptotically approach the same values as for the oscillator at zero temperature and the average coordinate and momentum show a Brownian-like behavior. We derive an exact master equation for the characteristic function of the oscillator valid for arbitrary factorized initial conditions. In the case of the equilibrium bath this equation reduces to an equation of the Hu-Paz-Zhang type, while for the coherent states bath it leads to an exact stochastic master equation with a multiplicative noise.
94 - N. Garcia 2006
I have made an ample study of one dimensional quantum oscillators, ranging from logarithmic to exponential potentials. I have found that the eigenvalues of the hamiltonian of the oscillator with the limiting (approachissimo) harmonic potential (~ p(x )2) maps the zeros of the Riemann function height up in the Riemann line. This is the potential created by the field of J(x) that is the Riemann generator of the prime number counting function, p(x), that in turn can be defined by an integral transformation of the Riemann zeta function. This plays the role of the spring strength of the quantum limiting harmonic oscillator. The number theory meaning of this result is that the roots height up of the zeta function are the eigenvalues of a Hamiltonian whose potential is the number of primes squared up to a given x. Therefore this may prove the never published Hilbert-Polya conjecture. The conjecture is true but does not imply the truth of the Riemann hypothesis. We can have complex conjugated zeros off the Riemman line and map them with another hermitic operator and a general expression is given for that. The zeros off the line affect the fluctuation of the eigenvalues but not their mean values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا