ﻻ يوجد ملخص باللغة العربية
It has been recently shown that the flavor composition of a self-interacting neutrino gas can spontaneously acquire a time-dependent pulsating component during its flavor evolution. In this work, we perform a more detailed study of this effect in a model where neutrinos are assumed to be emitted in a two-dimensional plane from an infinite line that acts as a neutrino antenna. We consider several examples with varying matter and neutrino densities and find that temporal instabilities with various frequencies are excited in a cascade. We compare the numerical calculations of the flavor evolution with the predictions of linearized stability analysis of the equations of motion. The results obtained with these two approaches are in good agreement in the linear regime, while a dramatic speed-up of the flavor
We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the ne
We consider a simplifed model for self-induced flavor
We consider matter density effects in theories with a false ground state. Large and dense systems, such as stars, can destabilize a metastable minimum and allow for the formation of bubbles of the true minimum. We derive the conditions under which th
We study the reasonable requirements of two anomalous $U(1)$s in a flavored-axion framework for the anomaly cancellations of both $U(1)$-mixed gravity and $U(1)_Ytimes[U(1)]^2$ which in turn determine the $U(1)_Y$ charges where $U(1)_Y$ is the hyperc
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously induced by the presence of pump depletion in the cavity, which leads to a periodic gain landscape for light propagating in the cavity. As a result of t