ﻻ يوجد ملخص باللغة العربية
We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously induced by the presence of pump depletion in the cavity, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.
We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large
We show that a laser beam which propagates through an optical medium with Kerr (focusing) and higher order (defocusing) nonlinearities displays pressure and surface-tension properties yielding capillarity and dripping effects totally analogous to usu
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial pertu
We report on the experimental study of an optically driven multimode semiconductor laser with 1~m cavity length. We observed a spatiotemporal regime where real time measurements reveal very high intensity peaks in the laser field. Such a regime, whic
Faraday waves are generated at the air/liquid interface inside an array of square cells. As the free surface inside each cell is destabilizing due to the oscillations, the shape of the free surface is drastically changing. Depending on the value of t