ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-induced Faraday instability laser

54   0   0.0 ( 0 )
 نشر من قبل Auro Michele Perego
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously induced by the presence of pump depletion in the cavity, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.



قيم البحث

اقرأ أيضاً

We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset Ps of the instability.
We show that a laser beam which propagates through an optical medium with Kerr (focusing) and higher order (defocusing) nonlinearities displays pressure and surface-tension properties yielding capillarity and dripping effects totally analogous to usu al liquid droplets. The system is reinterpreted in terms of a thermodynamic grand potential, allowing for the computation of the pressure and surface tension beyond the usual hydrodynamical approach based on Madelung transformation and the analogy with the Euler equation. We then show both analytically and numerically that the stationary soliton states of such a light system satisfy the Young-Laplace equation, and that the dynamical evolution through a capillary is described by the same law that governs the growth of droplets in an ordinary liquid system.
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial pertu rbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteristics that agree with theoretical predictions based on integrability properties of the focusing nonlinear Schrodinger equation. Our experimental results demonstrate persistence of the universal evolution scenario, even in the presence of small dissipation and noise in an experimental system that is not rigorously of an integrable nature.
We report on the experimental study of an optically driven multimode semiconductor laser with 1~m cavity length. We observed a spatiotemporal regime where real time measurements reveal very high intensity peaks in the laser field. Such a regime, whic h coexists with the locked state and with stable phase solitons, is characterized by the emergence of extreme events which produce a heavy tail statistics in the probability density function. We interpret the extreme events as collisions of spatiotemporal structures with opposite chirality. Numerical simulations of the semiconductor laser model, showing very similar dynamical behavior, substantiate our evidences and corroborate the description of such interactions as collisions between phase solitons and transient structures with different phase rotations.
Faraday waves are generated at the air/liquid interface inside an array of square cells. As the free surface inside each cell is destabilizing due to the oscillations, the shape of the free surface is drastically changing. Depending on the value of t he frequency f of oscillations, different patterns are observed inside each cell. For well defined f values, neighboring cells are observed to interact and a general organization is noticed. In such a situation, initially disordered structures lead to a general pattern covering the entire liquid pool and a spatial order appears all over the cell array. This abstract is related to a fluid dynamics video for the gallery of fluid motion 2009.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا