ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-induced suppression of collective neutrino oscillations in a supernova

218   0   0.0 ( 0 )
 نشر من قبل Alexander Friedland
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the neutrinosphere, potentially invalidating the basic neutrino transport paradigm. Fortunately, we also find that the single-angle approximation breaks down in this regime; in the full multiangle calculation, the oscillations start safely outside the transport region. The new suppression effect is traced to the interplay between the dispersion in the neutrino-neutrino interactions and the vacuum oscillation term.



قيم البحث

اقرأ أيضاً

131 - Sagar Airen 2018
In an interacting neutrino gas, collective modes of flavor coherence emerge that can be propagating or unstable. We derive the general dispersion relation in the linear regime that depends on the neutrino energy and angle distribution. The essential scales are the vacuum oscillation frequency $omega=Delta m^2/(2E)$, the neutrino-neutrino interaction energy $mu=sqrt{2}G_{rm F} n_ u$, and the matter potential $lambda=sqrt{2}G_{rm F} n_e$. Collective modes require non-vanishing $mu$ and may be dynamical even for $omega=0$ (fast modes), or they may require $omega ot=0$ (slow modes). The growth rate of unstable fast modes can be fast itself (independent of $omega$) or can be slow (suppressed by $sqrt{|omega/mu|}$). We clarify the role of flavor mixing, which is ignored for the identification of collective modes, but necessary to trigger collective flavor motion. A large matter effect is needed to provide an approximate fixed point of flavor evolution, while spatial or temporal variations of matter and/or neutrinos are required as a trigger, i.e., to translate the disturbance provided by the mass term to seed stable or unstable flavor waves. We work out explicit examples to illustrate these points.
We investigate the importance of going beyond the mean-field approximation in the dynamics of collective neutrino oscillations. To expand our understanding of the coherent neutrino oscillation problem, we apply concepts from many-body physics and qua ntum information theory. Specifically, we use measures of nontrivial correlations (otherwise known as entanglement) between the constituent neutrinos of the many-body system, such as the entanglement entropy and the Bloch vector of the reduced density matrix. The relevance of going beyond the mean field is demonstrated by comparisons between the evolution of the neutrino state in the many-body picture vs the mean-field limit, for different initial conditions.
82 - Alessandro Roggero 2021
Collective neutrino oscillations can potentially play an important role in transporting lepton flavor in astrophysical scenarios where the neutrino density is large, typical examples are the early universe and supernova explosions. It has been argued in the past that simple models of the neutrino Hamiltonian designed to describe forward scattering can support substantial flavor evolution on very short time scales $tapproxlog(N)/(G_Frho_ u)$, with $N$ the number of neutrinos, $G_F$ the Fermi constant and $rho_ u$ the neutrino density. This finding is in tension with results for similar but exactly solvable models for which $tapproxsqrt{N}/(G_Frho_ u)$ instead. In this work we provide a coherent explanation of this tension in terms of Dynamical Phase Transitions (DPT) and study the possible impact that a DPT could have in more realistic models of neutrino oscillations and their mean-field approximation.
125 - Huaiyu Duan 2015
Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience c ollective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have reset this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا