ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Properties of Graphene in Magnetic and Electric fields

56   0   0.0 ( 0 )
 نشر من قبل Ming-Fa Lin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical properties of graphene are explored by using the generalized tight-binding model. The main features of spectral structures, the form, frequency, number and intensity, are greatly enriched by the complex relationship among the interlayer atomic interactions, the magnetic quantization and the Coulomb potential energy. Absorption spectra have the shoulders, asymmetric peaks and logarithmic peaks, coming from the band-edge states of parabolic dispersions, the constant-energy loops and the saddle points, respectively. The initial forbidden excitation region is only revealed in even-layer AA stacking systems. Optical gaps and special structures can be generated by an electric field. The delta-function-like structures in magneto-optical spectra, which present the single, twin and double peaks, are associated with the symmetric, asymmetric and splitting Landau-level energy spectra, respectively. The single peaks due to the non-tilted Dirac cones exhibit the nearly uniform intensity. The AAB stacking possesses more absorption structures, compared to the other stackings. The diverse magneto-optical selection rules are mainly determined by the well-behaved, perturbed and undefined Landau modes. The frequent anti-crossings in the magnetic- and electric-field-dependent energy spectra lead to the increase of absorption peaks and the reduced intensities. Part of theoretical calculations are consistent with the experimental measurements, and the others need further detailed examinations.



قيم البحث

اقرأ أيضاً

113 - Chiun-Yan Lin , , Ming-Fa Lin 2019
The electronic properties and optical excitations are investigated in the geometry- and field-modulated bilayer graphene systems, respectively, by using the tight-binding model and Kubo formula. The stacking symmetry of bilayer graphene can be manipu lated by varying the width and position of domain wall (DW) within two normally stacked graphene. All the layer-dependent atomic interactions are taken into consideration under external fields. The modulation of stacking configuration gives rise to significant effects of zone folding on energy subbands, subenvelope wave functions, density of states, and optical absorption spectra. This study clearly illustrates the diverse 1D phenomena in the energy band structure and absorption spectra; the DW- and $V_z$-created dramatic variations are comprehensively explored under accurate calculations and delicate analysis. Concise physical pictures are proposed to give further insight into the quasi-1D behaviors.
313 - Hao Zhou , Yongmao Pei , Hu Huang 2013
Nano/micro-scale mechanical properties of multiferroic materials can be controlled by the external magnetic or electric field due to the coupling interaction. For the first time, a modularized multi-field nanoindentation apparatus for carrying out te sting on materials in external magnetostatic/electrostatic field is constructed. Technical issues, such as the application of magnetic/electric field and the processes to diminish the interference between external fields and the other parts of the apparatus, are addressed. Tests on calibration specimen indicate the feasibility of the apparatus. The load-displacement curves of ferromagnetic, ferroelectric and magnetoelectric materials in the presence/absence of external fields reveal the small-scale magnetomechanical and electromechanical coupling, showing as the Delta-E and Delta-H effects, i.e. the magnetic/electric field induced changes in the apparent elastic modulus and indentation hardness.
We show that congruent electric, magnetic and non-resonant optical fields acting concurrently on a polar paramagnetic (and polarisable) molecule offer possibilities to both amplify and control the directionality of the ensuing molecular states that s urpass those available in double-field combinations or in single fields alone. At the core of these triple-field effects is the lifting of the degeneracy of the projection quantum number $M$ by the magnetic field superimposed on the optical field and a subsequent coupling of the members of the doubled (for states with $M eq 0$) tunneling doublets due to the optical field by even a weak electrostatic field.
We derive the Schroedinger equation for a spinless charged particle constrained to a curved surface with electric and magnetics fields applied. The particle is confined on the surface using a thin-layer procedure, giving rise to the well-known geomet ric potential. The electric and magnetic fields are included via the four-potential. We find that there is no coupling between the fields and the surface curvature and that, with a proper choice of the gauge, the surface and transverse dynamics are exactly separable. Finally, the Hamiltonian for the cylinder, sphere and torus are analytically derived.
The large tunability of band gaps and optical absorptions of armchair MoS$_2$ nanoribbons of different widths under bending is studied using density functional theory and many-body perturbation GW and Bethe-Salpeter equation approaches. We find that there are two critical bending curvatures, and the non-edge and edge band gaps generally show a non-monotonic trend with bending. The non-degenerate edge gap splits show an oscillating feature with ribbon width n, with a period delta_n=3, due to quantum confinement effects. The complex strain patterns on the bent nanoribbons control the varying features of band structures and band gaps that result in varying exciton formations and optical properties. The binding energy and the spin singlet-triplet split of the exciton forming the lowest absorption peak generally decrease with bending curvatures. The large tunability of optical properties of bent MoS$_2$ nanoribbons is promising and will find applications in tunable optoelectronic nanodevices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا