ﻻ يوجد ملخص باللغة العربية
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infnite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the non perturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability (MR) of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations (LKFTs), (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces one loop asymptotic result in the weak coupling regime of the theory.
The analytical result for the six-photon helicity amplitudes in scalar QED is presented. To compute the loop, a recently developed method based on multiple cuts is used. The amplitudes for QED and $QED^{caln=1}$ are also derived using the supersymmetric decomposition linking the three theories.
Inspired by the corresponding problem in QCD, we determine the pressure of massless O(N) scalar field theory up to order g^6 in the weak-coupling expansion, where g^2 denotes the quartic coupling constant. This necessitates the computation of all 4-l
It is emphasized that for interactions with derivative couplings, the Ward Identity (WI) securing the preservation of a global U(1) symmetry should be modified. Scalar QED is taken as an explicit example. More precisely, it is rigorously shown in sca
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scal
We study the solutions of the wave equation where a massless scalar field is coupled to the Wahlquist metric, a type-D solution. We first take the full metric and then write simplifications of the metric by taking some of the constants in the metric