ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-loop pressure of massless O(N) scalar field theory

81   0   0.0 ( 0 )
 نشر من قبل Mikko Laine
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the corresponding problem in QCD, we determine the pressure of massless O(N) scalar field theory up to order g^6 in the weak-coupling expansion, where g^2 denotes the quartic coupling constant. This necessitates the computation of all 4-loop vacuum graphs at a finite temperature: by making use of methods developed by Arnold and Zhai at 3-loop level, we demonstrate that this task is manageable at least if one restricts to computing the logarithmic terms analytically, while handling the ``constant 4-loop contributions numerically. We also inspect the numerical convergence of the weak-coupling expansion after the inclusion of the new terms. Finally, we point out that while the present computation introduces strategies that should be helpful for the full 4-loop computation on the QCD-side, it also highlights the need to develop novel computational techniques, in order to be able to complete this formidable task in a systematic fashion.

قيم البحث

اقرأ أيضاً

We use the boundary effective theory (BET) approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially non -perturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with non-trivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
We compute the two-loop massless QCD corrections to the four-point amplitude $g+g rightarrow H+H$ resulting from effective operator insertions that describe the interaction of a Higgs boson with gluons in the infinite top quark mass limit. This ampli tude is an essential ingredient to the third-order QCD corrections to Higgs boson pair production. We have implemented our results in a numerical code that can be used for further phenomenological studies.
We consider a symmetric scalar theory with quartic coupling in 4-dimensions. We show that the 4 loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the leve l of the Lagrangian and is therefore conceptually simpler than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be used to do the corresponding calculation at the 4PI level, which cannot be done using any known method by introducing counterterms.
157 - A. Katsis , N. Tetradis 2018
We solve analytically the renormalization-group equation for the potential of the O(N)-symmetric scalar theory in the large-N limit and in dimensions 2<d<4, in order to look for nonperturbative fixed points that were found numerically in a recent stu dy. We find new real solutions with singularities in the higher derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative real axis.
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infnite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the non perturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability (MR) of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations (LKFTs), (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces one loop asymptotic result in the weak coupling regime of the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا