ﻻ يوجد ملخص باللغة العربية
We study the solutions of the wave equation where a massless scalar field is coupled to the Wahlquist metric, a type-D solution. We first take the full metric and then write simplifications of the metric by taking some of the constants in the metric null. When we do not equate any of the arbitrary constants in the metric to zero, we find the solution is given in terms of the general Heun function, apart from some simple functions multiplying this solution. This is also true, if we equate one of the constants $Q_0$ or $a_1$ to zero. When both the NUT-related constant $a_1$ and $Q_0$ are zero, the singly confluent Heun function is the solution. When we also equate the constant $ u_0$ to zero, we get the double confluent Heun-type solution. In the latter two cases, we have an exponential and two monomials raised to powers multiplying the Heun type function. Thus, we generalize the Batic et al. result for type-D metrics for this metric and show that all variations of the Wahlquist metric give Heun type solutions.
We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the pro
In Einstein-Maxwell gravity with a conformally coupled scalar field, the black hole found by Bocharova, Bronnikov, Melnikov, and Bekenstein breaks when embedded in the external magnetic field of the Melvin universe. The situation improves in presence
A spin-foam model is derived from the canonical model of Loop Quantum Gravity coupled to a massless scalar field. We generalized to the full theory the scheme first proposed in the context of Loop Quantum Cosmology by Ashtekar, Campiglia and Henderso
We consider an extremal Reissner-Nordstr{o}m black hole perturbed by a neutral massive point particle, which falls in radially. We study the linear metric perturbation in the vicinity of the black hole and find that the $l=0$ and $l=1$ spherical modes of the metric oscillate rather than decay.
The recently proposed regularized Lovelock tensors are kinetically coupled to the scalar field. The resulting equation of motion is second order. In particular, it is found that when the $p=3$ regularized Lovelock tensor is kinetically coupled to the